Sunday, July 28, 2013

EPA Nationale Regenwasser Rechner

EPA Nationale Regenwasser Rechner

Heute von der EPA (Dr Lewis Rossman) ist ein USA Nationwide Stormwater Calculator 

Hier ist ein neues Tool, basierend auf SWPÄ, die von Interesse sein können. Es bietet nicht-Modellierer mit einer schnellen und einfachen Weg, um rigoros schätzen Regenabflüsse Volumina von deren Eigenschaften. Für Sie SWPÄ Experten bietet es einen einfachen Weg, um langfristig Niederschlagsdaten und monatliche Raten ET für den Einsatz in Ihrem SWPÄ Modelle herunterzuladen. 

EPA National Regenwasser Rechner ist nun der Öffentlichkeit zugänglich  http://www.epa.gov/nrmrl/ wswrd / wq / models / swc / 

EPA National Regenwasser Rechner ist eine Desktop-Anwendung, die den jährlichen Betrag von Regenwasser und die Häufigkeit der Abfluss aus einem bestimmten Platz überall in den Vereinigten Staaten schätzt. Die Schätzungen basieren auf lokalen Bodenverhältnisse, Bodenbedeckung und historischen Niederschläge Aufzeichnungen.  Der Rechner greift auf mehreren nationalen Datenbanken, die Erde zu schaffen, Topographie, Niederschlag und Verdunstung Informationen für den gewählten Ort. Der Benutzer liefert Informationen über die Website der Bodenbedeckung und wählt die Arten von geringen Auswirkungen Entwicklung (LID) steuert sie verwenden möchten.
Lew Rossman 
Wasserversorgung und Water Resources Abteilung 
Nationale Risk Management Research Laboratory 
US Environmental Protection Agency 
Cincinnati, OH 45268
EPA Nationale Regenwasser Rechner Graphical User Interface

EPA 국립 폭풍우 계산기

EPA 국립 폭풍우 계산기

미국 전국 강우 계산기입니다 EPA (루이스 박사 Rossman)에 의해 오늘 발표 

여기에 관심이있을 수 있습니다 SWMM에 따라 새로운 도구가있다. 그것은 엄격하게 그들의 속성에서 강우 유출수 볼륨을 추정하는 빠르고 쉬운 방법이 아닌 모델러를 제공합니다. 당신 SWMM 전문가를위한, 당신 SWMM 모델에서 사용하기위한 장기 강우 자료 및 월별 ET 속도를 다운로드하는 쉬운 방법을 제공합니다. 

EPA의 전국 강우 계산기는 이제 대중에게 제공됩니다  http://www.epa.gov/nrmrl/의 wswrd / WQ / 모델 / SWC / 

EPA의 전국 강우 계산기 매년 빗물의 양 어디서나 미국의 특정 사이트에서 유출의 빈도를 추정하는 데스크톱 응용 프로그램입니다. 견적이 지역의 토양 조건, 토지 피복 및 역사 강우 기록을 기반으로하고 있습니다.  계산기 여러 국가의 토양을 제공하는 데이터베이스, 지형, 강우량, 그리고 선택한 사이트의 증발 정보를 액세스 할 수 있습니다. 사용자는 사이트의 토지 피복에 대한 정보를 제공하고 사용하고자하는 제어 낮은 영향 개발 (LID)의 유형을 선택합니다.
용두 Rossman의 
물 공급 및 수자원 본부 
국립 리스크 관리 연구소 
미국 환경 보호국 
신시내티, OH 45268
EPA 국립 폭풍우 계산기 그래픽 사용자 인터페이스 (GUI)

EPA国立雨水计算器

EPA国立雨水计算器

今天公布的EPA(刘易斯·罗斯曼博士)是一个美国全国雨水计算器

这里是一个新的工具,基于SWMM的利益,这可能是。它提供了一个快速简便的方法,严格从他们的物业估计雨水径流量的非建模。你SWMM专家,它提供了一个简单的方法来下载长期降雨SWMM模型使用的数据和每月ET率

是现已到的公共EPA的国家雨水计算器  / WQ /模型/的SWC / 

EPA的国家雨水计算器是一个桌面应用程序,估计每年雨水量和频率的径流来自特定网站在美国的任何地方。估计是基于当地的土壤条件,土地覆盖,与历史雨量纪录。  计算器访问几个国家数据库提供了土壤,地形,雨量,蒸发选址信息。用户提供网站的土地覆盖信息,并选择低影响开发(LID)控制的类型,他们想用
卢罗斯曼
供水和水资源部
国家风险管理研究实验室
美国 环保局
辛辛那提,俄亥俄州45268
EPA全国雨水计算器图形用户界面

EPA Calculadora Nacional de Aguas Pluviales

EPA Calculadora Nacional de Aguas Pluviales

Publicado hoy por la EPA (Dr. Lewis Rossman) es un EE.UU. Nacional de Aguas Pluviales Calculadora 

Aquí está una nueva herramienta, basada en SWMM, que pueden ser de su interés. Se ofrece no modeladores de una manera rápida y fácil de estimar rigurosamente volúmenes de escurrimiento de aguas pluviales de sus propiedades. Para que los expertos SWMM, ofrece una manera fácil de descargar datos de precipitación a largo plazo mensuales y las tasas de ET para su uso en el modelo SWMM. 

Calculadora Nacional de Aguas Pluviales de la EPA está ahora disponible para el público  http://www.epa.gov/nrmrl/ wswrd / wq / modelos / swc / 

Calculadora Nacional de Aguas Pluviales de la EPA es una aplicación de escritorio que estima la cantidad anual de agua de lluvia y la frecuencia de la escorrentía de un sitio específico en cualquier lugar en los Estados Unidos. Las estimaciones se basan en las condiciones locales del suelo, cubierta vegetal, y los registros históricos de precipitaciones.  La calculadora accede a varias bases de datos nacionales que proporcionan suelo, la topografía, las precipitaciones, la evaporación y la información para el sitio elegido. El usuario proporciona información acerca de la cobertura del suelo del sitio y selecciona los tipos de desarrollo de bajo impacto (LID) controla que les gustaría utilizar.
Lew Rossman 
Abastecimiento de Agua y Recursos Hídricos de la División 
Nacional de Gestión de Riesgos de Investigación Laboratorio de 
EE.UU. Agencia de Protección Ambiental 
Cincinnati, OH 45268
Aguas pluviales Calculadora interfaz gráfica de usuario EPA Nacional

Meaning of a Node Continuity Error of 100 Percent in SWMM 5

Note:  A continuity error of 100 percent for some nodes in SWMM5 simply means that the total lateral flow and total inflow from the upstream links and the outflow to downstream links is zero.

  

St. Venant Terms in SWMM 5 and how they change for Force Mains

Note:  An explanation of the four StVenant Terms in SWMM 5 and how they change for Force Mains.  The HGL is the water surface elevation in the upstream and downstream nodes of the link.  The HGL for a full link goes from the pipe crown elevation up to the rim elevation of the node + the surcharge depth of the node.  dq1 is calculated differently based on full or partially full force mains and gravity mains

            dq2 = Time Step * Awtd * (Head Downstream – Head Upstream) /  Link Length  or

            dq2 = Time Step * Awtd * (HGL) /  Link Length

            Qnew = (Qold – dq2 + dq3 + dq4) / (  1 + dq1)

when the force main is full dq3 and dq4 are zero and

Qnew = (Qold – dq2) / (  1 + dq1) 

The dq4 term in dynamic.c uses the area upstream (a1) and area downstream (a2), the midpoint velocity, the sigma factor (a function of the link Froude number), the link  length and the time step or

            dq4 = Time Step * Velocity * Velocity * (a2 – a1) / Link Length * Sigma

the dq3 term in dynamic.c uses the current midpoint area (a function of the midpoint depth), the sigma factor and the midpoint velocity

            dq3 = 2 * Velocity * ( Amid(current iteration) – Amid (last time step) * Sigma

dq1 = Time Step * RoughFactor / Rwtd^1.333 * |Velocity|

The weighted area (Awtd) is used in the dq2 term of the StVenant equation:

            dq2 = Time Step * Awtd * (Head Downstream – Head Upstream) /  Link Length

 



Known and Unknown Variables in the Node Continuity Equation of SWMM5

Subject: Known and Unknown Variables in the Node Continuity Equation

The new node depth is calculated based on the old inflow to the node, the old outflow from the node, the old node depth, a fixed time step, node evaporation and infiltration losses, new inflow to the node, new outflow from the node and the new total surface area of the node. The inflow, outflow and surface area are updated before the new iteration based on the last iteration link flows and node depths. The node depth equation is iterated until the depth in the node is less than 0.005 feet between the current iteration or the last iteration with a maximum of 8 iterations in SWMM 5.0.020
New Iteration Node Depth = Old Node Depth + [ ½ * (New Inflow – New Outflow) + ½ * (Old Inflow – Old Outflow) - Node Losses ] / New Surface Area * Time Step
1st Iteration: New Node Depth = New Iteration Node Depth
2nd to 8th Iteration: New Node Depth = ½ * New Iteration Node Depth + ½ * Old Iteration Node Depth


SWMM 5 Aquifer has a Saturated and Unsaturated Zone

Note:  The unsaturated upper zone soil moisture varies between the initial upper zone moisture fraction to the porosity fraction for the soil.  The soil moisture content is for the SWMM5 Aquifer which can cover more than one Subcatchment in your simulation network.

InfoSWMM and H2oMAP SWMM Output Statistics Manager

Note:  You can use the Output Statistics Manager in InfoSWMM and H2OMAP SWMM to compute the mean and maximum peak flow for ALL of the links or the mean and maximum depths of all nodes in your network. Once you have calculated the mean flows using the tool you can copy them using the command Ctrl-C and paste them to a new field in the Conduit Information DB Table.  The pasted mean flow from the Conduit Information table then can be mapped using Map Display.

Step 1:  Run the Output Statistics Manager and decide what links and statistics you want to compute.

 

Step 2:  Select the links you want to analyze using the pick tool.


Step 3:  Copy the Mean or Average Flow value using the command  Ctrl-C.



Step 4:  Copy the Mean or Average Flow value to the created Mean Field in the Conduit Information DB Table.


Step 5:  Map the Conduit.Mean variable from the Conduit Information DB Table.



Step 6:  Display the mean flow for each link.


EPA National Stormwater Calculator

Released today by the EPA (Dr Lewis Rossman) is a USA Nationwide Stormwater Calculator

Here is a new tool, based on SWMM, that may be of interest. It provides non-modelers with a quick and easy way to rigorously estimate stormwater runoff volumes from their properties. For you SWMM experts, it offers an easy way to download long term rainfall data and monthly ET rates for use in your SWMM models.

EPA's National Stormwater Calculator is Now Available to the Public http://www.epa.gov/nrmrl/wswrd/wq/models/swc/

EPA's National Stormwater Calculator is a desktop application that estimates the annual amount of rainwater and frequency of runoff from a specific site anywhere in the United States. Estimates are based on local soil conditions, land cover, and historic rainfall records. The Calculator accesses several national databases that provide soil, topography, rainfall, and evaporation information for the chosen site. The user supplies information about the site's land cover and selects the types of low impact development (LID) controls they would like to use.
Lew Rossman
Water Supply and Water Resources Division
National Risk Management Research Laboratory
U.S. Environmental Protection Agency
Cincinnati, OH 45268
EPA National Stormwater Calculator Graphical User Interface

SWMM5 Runoff and Depth Relationships

Note:  The surface runoff is a non linear function of the independent depth in both the pervious and impervious areas of the subcatchments.   No surface runoff occurs until the depth over either the impervious or pervious area is greater than the respective depression storage (Figure's 1, 2, 3 and 4).

Figure 1:  Surface RunoffDepth and  Depression Storage Relationship.

Figure 2:  Subcatchment Runoff and Depth over time with a Subcatchment Width of 500 feet.
Figure 3:  Subcatchment Runoff and Depth in a Scatter Graph with a Subcatchment Width of 500 feet.


Figure 4:  Subcatchment Runoff and Depth in a Scatter Graph with a Subcatchment Width of 2000 feet.

InfoSWMM and H2OMap SWMM Batch Simulation Manager


Note:  How to load Scenario Output into the Report Manager of H2OMAP SWMM and InfoSWMM after they have been run in a Batch File.

 





How to Make a New Project INI file for InfoSewer

Note:  How to Make a New Project INI file for InfoSewer

Step 1: Make a new InfoSewer Project as a New Empty Map and use the ArcGIS Default as the spatial reference.


Step 2:  Save your new empty model.



Step 3:  Copy your old model DB folder to the new MyEmptyModel DB folder




Step 4:  Open up  the mxd file MyEmptyModel and Initialize it – it should be a valid model now.

InfoSWMM and H2oMAP SWMM Map of the Maximum Surcharge Depth Over Highest Pipe Crown

Note:  You can copy and paste information from the Junction Output Summary to a newly created Junction Information DB Column so that you can use Map Display to visually see the newly saved output variable.

Step 1:  Run the model and then go to the Junction Summary in Report Manager and select all of the nodes in your model.


Step 2:  Copy the Maximum Surcharge Height over Highest Pipe Crown Column

 

Step 3:  Make and Insert a New Editable Field in the Junction Information Table by Pasting the information you just copied from the Junction Summary  Output Column.


Step 4:  Use the Map Display Command and use Existing DB as the Source and the newly created variable Junction_Surcharge_Depth


Step 5:  Use the Option Show Label Properties and adjust the Font to show the maximum surcharge depth.



SWMM5 Groundwater Flow Components

Note:  There are three sub flow components in the calculation of the groundwater flow from a SWMM 5 Subcatchment. 

1st ComponentFlow = Groundwater Flow Coef. * (LowerDepth – Aquifer Bottom to Node Invert) ^ Groundwater Flow Exponent

2 nd ComponentFlow = SurfaceWater Flow Coef. * (Aquifer Bottom to Water Surface – Aquifer Bottom to Node Invert) ^ SurfaceWater Flow Exponent

3rd ComponentFlow = SurfaceWater-Groundwater Flow Coef. * (Aquifer LowerDepth * Aquifer Bottom to Node Invert)

The total flow is the sum of all three components.

SWMM 5 Subcatchment Runoff and Depth Relationship

Note:  The surface runoff is a non linear function of the independent depth in both the pervious and impervious areas of the subcatchments.   No surface runoff occurs until the depthover either the impervious or pervious area is greater than the respective depression storage (Figure's 1, 2, 3 and 4).

Figure 1:  Surface RunoffDepth and  Depression Storage Relationship.

Figure 2:  Subcatchment Runoff and Depth over time with a Subcatchment Width of 500 feet.
Figure 3:  Subcatchment Runoff and Depth in a Scatter Graph with a Subcatchment Width of 500 feet.


Figure 4:  Subcatchment Runoff and Depth in a Scatter Graph with a Subcatchment Width of 2000 feet.

Three Types of Surfaces in each Subcatchment of SWMM 5

Note:  There are Three Types of Surfaces in each Subcatchment of SWMM 5.  The overall depth in a subcatchment is the weighted average of the impervious without depression storage area, the impervious with depression storage area and the pervious area depth.  The depths on each type of area are independent of each other. 



Figure 1:  The processes that occur on each type of Subcatchment Area.

Figure 2:  The three independent Depths on a Subcatchment.  The SWMM 5 reported Depth is the weighted average of the three depths.


The total flow from a Subcatchment in SWMM 5

Note:  The total flow from a Subcatchment is the sum of the flow from the impervious area with and without depression storage and the pervious area with depression strorage.  The same width, slope but different roughness applies to the impervious and pervious portions of the subcatchment.
 

Saturday, July 27, 2013

Link Depth and Node Depth Relationship in SWMM 5

Note:  The depth in a manhole or node in SWMM 5 can be higher than the depth in the connecting links if the link is surcharged.  Typically the upstream link depth is equal to the upstream node depth (if there is not link offsets) and the downstream link depth is equal to the downstream node depth (if there is no offsets) until the link is surcharged and then thenode surcharge depth algorithm is used in SWMM 5 and point iteration equation is used to calculate the surcharge depth in the node.

Simulating a Blocked Pipe in SWMM 5 and InfoSWMM

Note:  For example, you can use the Simulation Elapsed time as the Premise and a complete closure of the orifice as the action to simulate a blockage in a portion of the network.  A circular orifice can be used to simulate a circular pipe and of course a rectangular orifice can simulate a rectangular pipe.

AI Rivers of Wisdom about ICM SWMM

Here's the text "Rivers of Wisdom" formatted with one sentence per line: [Verse 1] 🌊 Beneath the ancient oak, where shadows p...