Tuesday, October 30, 2012

Format of the SWMM 5 Interface File

Note:  Format of the SWMM 5 Interface File

Here is an example and Figure 1 shows the format (from Iface.c in SWMM 5)

SWMM5 Interface File
This is from the 1st line of the SWMM 5 Model in the Title/Notes Section of the Data
900  - reporting time step in sec
1    - number of constituents as listed below:
1    - number of nodes as listed below:
Node             Year Mon Day Hr  Min Sec FLOW
10208            2011 02  22  00  00  00  0.000000
10208            2011 02  22  00  15  00  0.000000
10208            2011 02  22  00  30  00  0.000000
10208            2011 02  22  00  45  00  0.000000
10208            2011 02  22  01  00  00  0.000000  

Figure 1.   Graph of the lines in the SWMM 5 Interface File

Sunday, October 28, 2012

Arc Map If Statements for Showing Flooding in InfoSWMM

Arc Map If Statements for Showing Flooding in InfoSWMM

Arc Map If Statements for Showing Flooding in InfoSWMM

by dickinsonre
Arc Map If Statements for Showing Flooding in InfoSWMM

You can use a combination of the Map Display in InfoSWMM and the Arc Map Label Properties to show the Maximum Ponded Volume at a node during amInfoSWMM simulation. 

The label function in VBSCRIPT to show just non zero flooded volumes(Figure 1) is:

Function FindLabel ( [PONDED_VOL] )
  FindLabel = "" & FormatNumber([PONDED_VOL],2) & ""
End Function

and the values of Flooded Time,  Maximum Flooded Rate and Maximum Ponded Volume can be found in the Junction Attribute Table(Figure 2)  but not the Junction Summary Table of the InfoSWMM output report manager tables. 

A VBSCRIPT function to show both ponded volume and flooded rate (Figure 3) is:

Function FindLabel ( [PONDED_VOL], [FLOOD_RATE]  )
  FindLabel = "" & FormatNumber([PONDED_VOL],2) & " / "   & FormatNumber([FLOOD_RATE],1)
End Function

Figure 1.  InfoSWMM Map Display of Ponded Volume which is the integral of node flooding over the flooded time.

Figure 2.   If you use the Map Display feature in InfoSWMM then the total flooded time, flood rate and maximum ponded volume will be shown in the Junction Attribute Table.

Figure 3.  Labels showing both Maximum Flooded Volume and Maximum Flooded Time on the InfoSWMM Map Display

Saturday, October 27, 2012

1000 Year Simulation with Rainfall in SWMM5

Subject:   1000 Year Simulation with Rainfall in SWMM5

1000 Year Simulation with Rainfall in SWMM5

by dickinsonre
Subject:   1000 Year Simulation with Rainfall 
The attached one Subcatchment SWMM 5 model and associated Rainfall was created using the Random function in Excel on a measured NCD station in Boston.    There is a dry weather flow component of 0.5 cfs with an hourly pattern.  The rainfall averages 54 inches over the 1000 years and the runoff is 20 inches on average over the 1000 years
Figure 1. Combined Flow at the Outfall for the 1000 year Simulation.

Connecting to Others Using Twitter, LinkedIn and Blogs for SWMM5, InfoSWMM and InfoSewer

Connecting to Others Using Twitter, LinkedIn and Blogs for SWMM5, InfoSWMM and InfoSewer

by dickinsonre
Twitter besides being 140 characters of greatness has many third party tools such as Tweet Topic Exploreer which allows you to see visually your Tweets by subject, http://tweettopicexplorer.neoformix.com/#n=rdickinson I found it handy to see the interrelationships of my tweets to each other  and to the industry (Figure 2 and Figure 3).  Here are the Twitter names of myself and Innovyze along with the Innovyze LinkedIn Group:

We want to hear from you – connect with Innovyze!
Twitter: @Innovyze
LinkedIn: Innovyze Group
Twitter: @rdickinson

I try to have easy links between Twitter, LinkedIn,  Blogs and Wikipedia on my Ning Social Network, which you can join and post questions and hopefully gather some information (Figure 1)

Figure 1.  It is important to have a connection between Social Networks, Blogs, Twitter and LinkedIn.

Figure 2.  Tweet topics for RDICKINSON on Twitter.

Figure 3.  Tweet Topics for INNOVYZE on Twitter.

Wednesday, October 24, 2012

Advanced SWMM 5 import into InfoSWMM and H2OMAP SWMM

Subject:  Advanced SWMM 5 import into InfoSWMM and H2OMAP SWMM

Advanced SWMM 5 import into InfoSWMM andH2OMAP SWMM

by dickinsonre
Subject:  Advanced SWMM 5 import into InfoSWMM and H2OMAP SWMM
The current version of InfoSWMM and H2OMAP SWMM not only imports the latest SWMM 5 version but it has built in flexibility that allows the user to import selected data sections, model data sections or auxiliary file information such as calibration data files.  This allows you the choice of importing non specific network data that can used in the model of any city, county, shire, town or watershed.  For example,  you can import only these sections without affecting the geometry of your network:
1.      Calibration File Information,
2.      RTC Rules
3.      Aquifers
4.      Snowpacks
5.      Buildup for Water Quality,
6.      Washoff for Water Quality,
7.      Evaporation,
8.      Time Series,
9.       DWF,
10.        Patterns,
11.        RDII
12.        Loadings,
13.        Curves,
14.        LID Controls,
15.        LID Usage,
16.        Pollutants,
17.        Land Uses
Possible uses of this feature would be to have a city wide or company wide library of LID controls, RTC Rules or RDII values.
Figure 1.  Import Dialog with Import Options
Figure 2.  Only names and directories of the Calibration Files was imported



InfoSewer to InfoSWMM Import Tips

Subject:   InfoSewer to InfoSWMM Import Tips

InfoSewer to InfoSWMM Import Tips

by dickinsonre
Subject:   InfoSewer to InfoSWMM Import Tips
The direct import of InfoSewer to InfoSWMM (Figure 1) is both direct and robust but you need to be aware of Run Manager changes to optimize the InfoSWMMmodel:
1.       Make sure that the Flow Units in InfoSWMM Run Manager match the default flow units in InfoSewer so that the DWF values are comparable,
2.      Make sure that the Output Flow Units in InfoSWMM match the Output Flow Units in InfoSewer so direct comparisons are easier,
3.      Add a Pump On and Pump Off depth to the Pumps in  InfoSWMM so that the pumps work better in a fully dynamic solution,
4.      The Fixed Pump Curves of InfoSewer should be checked in the Pump Curve section of InfoSWMM to make sure they are comparable,
5.      The InfoSWMM conduit step lengthening option should be used to speed up the model if you have short links in InfoSewer,
6.      You can check the overall balance in the two modeling platforms by comparing the System Load Graph in InfoSewer to the Total Inflow Graph inInfoSWMM.
Figure 1   Dialog for Importing InfoSewer to InfoSWMM

How to Use the SWMM 5 Excel Tool with InfoSewer CSV Files

How to Use the SWMM 5 Excel Tool with InfoSewer CSV Files

How to Use the SWMM 5 Excel Tool with InfoSewer CSV Files

by dickinsonre
How to Use the SWMM 5 Excel Tool with InfoSewer CSV Files

1. Export Link and Manholes in InfoSewer for your current Scenario to CSV files,
2. Set up the Excel Add on for SWMM 5 by using the command Tools, and Configure Tools (see below)
3. Run SWMM 5 and edit the data in Excel, you should be able to copy and paste the information from the CSV files into the correct SWMM 5 sections.

Tuesday, October 23, 2012

How to Use the Variable Flow Percentage Flow Splitter in InfoSewer

Subject:   How to Use the Variable Flow Percentage Flow Splitter in InfoSewer

How to use the Flow Splitter in InfoSewer for Dendritic Networks

by dickinsonre
Subject:  How to use the Flow Splitter in InfoSewer for Dendritic Networks

InfoSewer, which is an extension in Arc Map, does need to have slit split defined where gravity mains merge together to determine the amount of flow in each of the downstream conduits (Figure 1).   The options for the flow splitterin each of the downstream links are:
1.       Automatic Allocation
2.       Fixed Flow Percentage
3.       Variable Flow Percentage and
4.       Inflow-Outflow Curve 
At an outfall where the invert of the outfall pipe is raised compared to the inverts of the incoming and outgoing pipes a flow split of Variable Flow Percentage or Inflow/Outflow curve may work better (Figure 2). 

Figure 1. Options for Performing a Flow Split in InfoSewer

Figure 2.  The Effect of the flow split can be used to model complex situations in a dendritic model with outfalls.

Innovyze President Dr. Paul F. Boulos Named President-Elect of the American Academy of Water Resources Engineers

Innovyze President Dr. Paul F. Boulos Named President-Elect of the
American Academy of Water Resources Engineers
Broomfield, Colorado USA, October 23, 2012 — Innovyze, a leading global innovator of wet infrastructure modeling and simulation software and technologies, today announced that its president and chief operating officer, Paul F. Boulos, Ph.D., BCEEM, Hon.D.WRE, Dist.D.NE, F.ASCE, has been re-elected to the Board of Trustees and named president-elect of the American Academy of Water Resources Engineers (AAWRE) of the American Society of Civil Engineers (ASCE). Dr. Boulos was first elected to the AAWRE Board of Trustees in 2009.
His naming as AAWRE president-elect is the first in a three-year sequence of positions: in October 2013 and 2014, Dr. Boulos will serve as president and past president, respectively. In these roles, Dr. Boulos will seek to strategically position AAWRE for national and global prominence as the leading expert certification organization for water resources engineering professionals.
“Dr. Boulos’ extensive professional experience and exceptional leadership skills make him an outstanding asset for AAWRE,” said the organization’s past President, founding board member and trustee William H. Espey, Jr., Ph.D., P.E., D.WRE, President of RPS Espey in Austin, TX. “He is an individual of extraordinary merit, and his contributions to our profession are innumerable. There is no doubt that he will bring innovative ideas to energize our water resources engineering certification program and further strengthen our profession around the world.”
Dr. Boulos is one of the world’s foremost experts on water resources and navigation engineering, authoring nine authoritative books and more than 200 technical articles on issues critical to the water and wastewater industry. He is the recipient of numerous honors from national and international scientific and engineering societies, governments, universities, and NGOs. Among these acknowledgements are notable technical awards for excellence in scholarship from the American Society of Civil Engineers, the American Water Works Association and the U.S. Environmental Protection Agency. He also received the U.S. Ellis Island Medal of Honor, one of America’s highest accolades; the Pride of Heritage Award from the Lebanese American Foundation; the Alumni of the Year Award by the Lebanese American University; and was inducted into the University of Kentucky College of Engineering Hall of Distinction, the highest honor the university bestows on its alumni. He was given Honorary Diplomate status by AAWRE as well as Distinguished Diplomate status in Navigation Engineering by the Academy of Coastal, Ocean, Port & Navigation Engineers, both academies’ top honors. He is a Fellow of the American Society of Civil Engineers and a Diplomate (by Eminence) of the American Academy of Environmental Engineers.
Dr. Boulos serves on the Board of Trustees of the Lebanese American University (New York, NY and Beirut, Lebanon); the Boards of Directors of Innovyze, MWH Global (Broomfield, CO) and America-Mideast Educational and Training Services, Inc./AMIDEAST (Washington, D.C.); and the Dean’s International Council of the Harris School of Public Policy Studies at the University of Chicago (Chicago, IL). He has been a member of advisory boards and councils for many organizations, including the Buck Advisory Council of the Buck Institute for Research on Aging (Novato, CA), the Arab American National Museum (Dearborn, MI), the USEPA Science Advisory Board, the Urban Water Resources Research Council of the Environmental and Water Resources Institute (EWRI), and the National Academy of Sciences/National Research Council.
Dr. Boulos received his Doctorate, Master of Science and Bachelor of Science degrees in Civil Engineering from the University of Kentucky as well as a Bachelor degree in General Science from the Lebanese American University. He has also completed Harvard Business School’s Advanced Management Program.
The American Academy of Water Resources Engineers was created by the American Society of Civil Engineers and its Environmental and Water Resources Institute to improve the practice, elevate the standards, and advance the profession of water resources engineering. Key AAWRE goals are to identify and certify engineers with specialized knowledge in water resources for the benefit of the public; recognize the ethical practice of water resources engineering at the expert level; enhance the practice of water resources engineering; support and promote positions on water resources issues important to the public health, safety and welfare; and encourage life-long learning and continued professional development. 
“Dr. Boulos is one of the world’s foremost leaders in water resources engineering and a leading engineering executive, and we are pleased and honored that he will continue to make invaluable contributions to AAWRE,” said AAWRE incoming President Robert G. Traver, Ph.D., P.E., D.WRE, Director of the Villanova Center for the Advancement of Sustainability in Engineering and Professor, Department of Civil and Environmental Engineering at Villanova University (Villanova, PA). “His wealth of experience, vibrant leadership, and great passion for our profession will greatly advance the mission and role of AAWRE by promoting the growth of the academy and giving professional engineers an opportunity to gain recognition by the water resources industry.”
“AAWRE owes its success not to chance, but to the dedication of its Board members and staff,” said Boulos. “They have donated their time, talent and resources with a passionate commitment to our water resources profession and our members. Serving and representing this organization is not a duty, but an honor. I look forward to continuing to work with the Board to promote the importance of certification … initiate and support innovations that improve the practice, elevate the standards, advance the cause and the future of the water resources engineering profession … and effectively serve the water resources community.”
For more information on AAWRE, visit www.aawre.org.

Saturday, October 20, 2012

How to Have both Depth and Elevation for the Node Rim Elevation in InfoSWMM

Subject:  How to Have both Depth and Elevation for the Node Rim Elevation in InfoSWMM

How to Have both Depth and Elevation for the Node Rim Elevation in InfoSWMM

by dickinsonre
Subject:  How to Have both Depth and Elevation for the Node Rim Elevation in InfoSWMM

If you turn on  store Absolute Junction Rim option  then the Rim Elevation = Invert Elevation + Maximum Node Depth will be shown in the DB Table Junction Hydraulic Modeling Data and the Attribute Browser of InfoSWMM and H2OMAP SWMM

Figure 1.  Store Absolute Junction Rim Elevation Option

Now the Rim Elevation can be copied from the DB Table

Figure 2.  The DB for Junction Modeling Data

And Pasted to the Elevation Table in Junction Information

Figure 3.  The DB for the Junction Information Data

Then you can go back and turn off the Preferences flag and you will have the Rim Elevation in in the Information Table and the Maximum Depth in the Junction Hydraulic Modeling Data DB Table,  I do this all of the time as it helps to see both the depth and the Elevation.

Friday, October 19, 2012

InfoMaster Overview



click to enlargeInfoMaster is an Esri-based business analytics, optimization, and management system for sewer networks. It leverages existing GIS and IT investments to give utilities a cost effective business intelligence and a data collection platform for informed decision making. With versions designed for the desktop, Web, and iOS mobile devices, InfoMaster provides for day-to-day operational management and long-term network planning for users throughout the organization.


  • Water and sewer network business intelligence
  • Risk-based rehabilitation planning
  • Proactive operational planning
  • Condition assessment management
  • Infrastructure data validation
  • CCTV data management

Business Intelligence for Water and Sewer Systems

The data available in water and sewer networks continues to grow exponentially, whether CCTV video of sewer lines or hundreds of thousands of smart meter readings. InfoMaster is designed to help utilities review, organize and analyze all this information within their existing Esri architecture. Using sophisticated built-in tools, SQL query sets, or custom scripting, users can manage their infrastructure data in ways not previously achievable.

Out-of-the-Box Data Hub

Unlike many traditional business intelligence applications, InfoMaster comes preconfigured to understand water and sewer networks. InfoMaster knows that sewer pipes have upstream and downstream manholes, a hydrant is connected to the distribution system with a lateral, scoring of CCTV defects, and dozens of other items functionality specific to water networks. The database leverages the existing Esri water and wastewater data models to include the ability to store information about incidents and tasks related to the network. Central to InfoMaster is its ability to exchange with other enterprise CMMS or ERP databases enabling a true 360 degree view of the infrastructure.

Proactive Capital and Operational Planning

InfoMaster gives utilities a new perspective on their capital and operational planning. Armed with a clear view of their infrastructure condition, capital and recurring costs, likelihood of failure, consequence of failure, historical incidents and maintenance, planners and managers can revamp capital and operational plans. Utilities can shift operational budget away from reactive and into proactive management.

Rich Results Presentation and Reporting

InfoMaster utilizes the rich Esri results and presentation environment, letting users create thematic maps with flexible symbology and rich detail. Its built-in report generator comes with dozens of standard reports and also allows users to quickly build custom reports and graphs against any piece of data stored in the system. In addition, management dashboards make it possible to effectively track level of service metrics and other key operational data, allowing ata- glance assessments of the past, present and future state of strategic assets.
click to enlarge

InfoMaster Mobile

InfoMaster Mobile enables infrastructure data to be created, used, consumed, and verified by staff in the field on a variety of devices. Using the Esri ArcGIS Server, InfoMaster Mobile leverages the geodatabase for use outside the office. It can run on both Web browsers and iOS (iPad, and iPhone) devices.
  • Update task/work order status online
  • Complete task dependent records
  • Create and upload add-on notes, pictures, video and documents

You Don't Work as Hard as You Think You Do

You Don't Work as Hard as You Think You Do

| Fri Oct. 19, 2012 8:14 AM PDT
Via Matt Yglesias, here's an interesting BLS study from David Yanofsky about how many hours people say they work vs. how many hours they actually work. This is actually sort of a pet topic of mine. My experience is solely with white-collar offices, but for years I noticed that my colleagues routinely overestimated how many hours they worked. As it happened, I frequently worked a little late and a little on weekends, so I had a good sense of just how many people were in the building after 6 pm or on Saturdays. Answer: virtually no one. You could fire a cannon through the place and not risk hitting anyone. And yet, people routinely thought they worked something like 50 hours a week.
But guess what? 50 hours a week is actually a lot. It means working until 7 pm every night. Or it means working until 6 pm every night and then working a solid chunk of hours on Saturday. And there just weren't many people who did that. (Nor was much work being done at home. You'll just have to trust me on that.) The numbers are even worse for 60 hours a week. You'd have to work 10-hour days routinely and a good chunk of hours on both weekend days. There are people who do this, but honestly, not all that many.
Anyway, the chart below demonstrates this graphically. It shows the gap between hours reported and hours actually worked:
As you can see, people who report working 50 hours a week typically overestimate by about 5 hours. My take on this has always been simple. If you stay late a couple of days a week, itfeels like a strain. You feel like you've really put in the hours. And since, in the modern work environment, 50 hours sounds only moderately hardworking (60 hours is the lower bound for real workaholics), that's what you convince yourself you worked that week. But the truth is that two or three late nights actually adds up to maybe 45 hours or so.
At the high end it gets even worse: 75 hours is 10-11 hours every day, or 12-13 hours six days a week. Not many people really do that. But if you work 60 hours a week, the truth is that you're working a helluva lot of hours. That's 10-hour days six days a week. But since 60 hours is just your basic workaholic level, and you feel like you're doing more than basic workaholic hours, you figure you must really be working 70 or 80 hours a week.
There are some people who really do work these kinds of hours, of course. And there are people who work multiple jobs and put in lots of hours. But among your typical hardworking office types, bragging on your hours comes with the territory. As with other kinds of bragging, however, you should take it with a grain of salt.

Monday, October 15, 2012

Nobel economics prize goes to two Americans: Lloyd Shapley, Alvin Roth

Nobel economics prize goes to two Americans: Lloyd Shapley, Alvin Roth

By Updated: Monday, October 15, 8:46 AM

Two researchers whose work has made for better matchups among students and the schools they wish to attend, and between kidney donors and recipients, were awarded the Nobel Prize in economicsMonday.
Lloyd Shapley and Alvin E. Roth will share the $1.2 million prize for work that broke new theoretical ground (in the case of Shapley) and resulted in concrete uses for that theory (developed by Roth). It is an award that is not terribly relevant to the great macroeconomic crises of the day but that honors work that provided a deeper understanding of how markets work and put that knowledge to use for the practical benefit of humanity.
“The combination of Shapley’s basic theory and Roth’s empirical investigations, experiments and practical design has generated a flourishing field of research and improved the performance of many markets,”the Nobel committee said in its announcement awarding what is formally known as the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel.
Shapley, a professor emeritus at UCLA, developed a theory of “matching methods,” for how to best to match people up in large groups of, for example, men and women considering marriage. The goal is to ensure that the system is “stable,” that both partners feel that they have gotten the most attractive possible match; otherwise, they might separate in search of something better.
Shapley and colleague David Gale developed a process for ensuring that those matches are as stable as possible. In the process, known as the “Gale-Shapley algorithm,” there are a series of rounds in which men and women rank potential mates, and matches are made until everyone finds a spouse and the system is stable.
That work was purely theoretical — no marriages were arranged through the algorithm. But years later, Roth, now at Stanford University, developed ways to apply Shapley’s work to practical uses. The earliest and most widespread was in the system used to match new medical residents with hospitals that wish to employ them.
Roth first recognized that the National Resident Matching Program, which attempts to ensure that new doctors and the hospitals looking to hire them can get as good a match as possible, closely matched the Gale-Shapley algorithm. After all, an employer and employee trying to find the best match are in many ways similar to a hypothetical husband and wife looking to match up.
Roth then helped the resident matching program adapt its process to deal with couples who wished to ensure that they be hired by hospitals in the same city and to make the system less prone to manipulation by participants trying to game the system.
New York City schools faced similar problems in their old system for matching students with schools; students listed their preferred schools, but the system was prone to manipulation when less-qualified students could improve their odds of getting into a school by ranking it higher than they really viewed it.
Roth helped the schools revamp the system, using the lessons from the resident matching program and the theoretical work by Shapley. The result, according to materials from the Nobel committee, was a 90 percent drop in the number of students who were assigned to a school for which they had expressed no preference.
The field of “matching” has life-and-death consequences as well. Research is underway on applying the Gale-Shapley algorithm to the challenge of matching up kidney donors and those who need a transplant. This is a field with particular complications, as many willing to give a kidney to a loved one are not a match, so multi-direction trades can be useful — but that requires a complexity far beyond the original Shapley work in the 1960s or Roth’s efforts to put it to work in the 1980s.
“Some say economics has all kinds of good tools and techniques, but it has an absence of interesting problems,” Roth, 58, told Forbes magazine in 2010. “I look around the world, and I see all kinds of interesting, important problems we ought to solve with the tools we have.”

AI Rivers of Wisdom about ICM SWMM

Here's the text "Rivers of Wisdom" formatted with one sentence per line: [Verse 1] 🌊 Beneath the ancient oak, where shadows p...