Wednesday, July 29, 2015

Rawls & Brakensiek soil parameter estimates for #SWMM5 and #INFOSWMM

The original source is
and has been modified to have values in mm instead of cm

Infiltration:Parameter EstimatesIt is best to use soil property and Green-Ampt infiltration parameters derived from field and laboratory measurements of infiltration on the study watershed. Even under controlled conditions hydraulic soil property measurements are very difficult. Hysteresis effects and the extremely non-linear behavior of soil water retention make it very difficult to uniquely identify soil infiltration parameters. Hydrologic studies seldom have budgets sufficient to determine the needed parameters in the field.

Considerable prior research has been performed to relate soil infiltration parameter values to textural classification. Some highly relevant references are Rawls and Brakensiek (1983) and (1985), and Rawls et al. (1982) and (1983). Table 9 summarizes Rawls and Brakensiek soil parameter estimates as a function of United States Department of Agriculture (USDA) textural classification. It is important to note that the values listed in Table 9 were derived from the geometric mean of tests on a large number of soil samples. Hydraulic conductivies for all GA based approaches are half of the saturated values listed in Table 9 (Rawls, et al., 1982). The variance of these values is large, indicating significant uncertainty or low correlation between textural classification and soil texture. However, these values are useful because they provide an initial estimate of infiltration parameters. The variances of the values in Table 9 are listed in the original papers, and are published in Maidment (1993).
USDA
Textural
Classification
Total Porosity/Saturation
θs
(cm3/cm3)
Effective Porosity/Saturation
θe
(cm3/cm3)
Field Capacity Saturation
θf
(cm3/cm3)
Wilting Point Saturation
θwp
(cm3/cm3)
Residual Saturation
θr
(cm3/cm3)
Bubbling Pressure Geometric Mean
Psi.gifb
(cm)
Pore Size Distribution Arithmetic Mean
λ
(cm/cm)
Saturated Hydraulic Conductivity (multiply by 0.5 for GA methods)
Ks
(cm/h)
Wetting Front Suction Head (Capillary Head)
Psi.gifƒ
(cm)
Sand0.4370.4170.0910.0330.027.260.69423.564.95
Loamy sand0.4370.4010.1250.0550.0358.690.5535.986.13
Sandy loam0.4530.4120.2070.0950.04114.660.3782.1811.01
Loam0.4630.4340.270.1170.02711.150.2521.328.89
Silt loam0.5010.4860.330.1330.01520.790.2340.6816.68
Sandy clay loam0.3980.3300.2550.1480.06828.080.3190.3021.85
Clay loam0.4640.3900.3180.1970.07525.890.2420.2020.88
Silty clay loam0.4710.4320.3660.2080.04032.560.1770.2027.30
Sandy clay0.4300.3210.3390.2390.10929.170.2230.1223.90
Silty clay0.4790.4230.3870.2500.05634.190.1500.1029.22
Clay0.4750.3850.3960.2720.09037.300.1650.0631.63
Table 9 - Rawls & Brakensiek soil parameter estimates.
In the table soil moistures θ, are listed for saturation (s), effective saturation (e), field capacity (f), wilting point (wp), and residual (r). These values are applicable for all approaches. These are followed by the bubbling pressure Psi.gifb (used for RE), the pore distribution index (used for RE, GAR and multi-layer GA in continuous mode), saturated hydraulic conductivity Ks (used directly for RE, halved for all GA approaches), the wetting front suction head Psi.giff (used for all GA approaches).
Standard practice in developing GSSHA models is to obtain digital soil textural classification data and use these data to develop an index map of soil types. Soil textural maps may be combined with land use or vegetation maps. Land use and vegetation can strongly influence soil hydraulic properties. The Mapping Table is used to assign initial parameters to the soil types in the index map. One or more of these parameters, typically Ksand Psi.giff or Psi.gifb, are used as calibration parameters. As discussed by Senarath et al (2000), calibration is best done using an automated calibration method, such as SCE (Duan et al, 1992), combined with long term simulations. The possible parameter values are bounded by the range found in literature values, unless other factors, such as land use or vegetation, dictate otherwise. The range of values may be narrowed by making field and laboratory measurements of parameters.

Friday, July 24, 2015

How to Make an Upstream Interface file for two InfoSWMM Runs

How to Make an Upstream Interface file for two InfoSWMM Runs

Subject:  How to Make a SWMM 5 Interface File from InfoSWMM  for  later usage
The steps are easy:
1.       Make all Downstream Links from you nodes Inactive by using the Facility Manager
2.       Change the Downstream node to an Outfall
3.      Save the flows to the OUTFLOWS file of InfoSWMM - the outfalls will be saved to the OUTFLOWS file
4.      The Outflow Flows for each New Outfall will be saved to the Text File
5.      Use the Created OUTFLOWS file as the INFLOWS file in the next run if InfoSWMM - you need to change the node back to a regular node and not an outfall node

Wednesday, July 22, 2015

How to Make a SWMM 5 Interface File from InfoSWMM

How to Make a SWMM 5 Interface File from InfoSWMM

Subject:  How to Make a SWMM 5 Interface File from InfoSWMM
 The steps are easy:
1.       Make all Links Inactive by using the Facility Manager
2.      Save the flows to the OUTFLOWS file of InfoSWMM
3.      The Outlet Node of Each Subcatchment will be save to the Text File
4.      Use the Created OUTFLOWS file as the INFLOWS file in SWMM5

System Graphs in InfoSWMM and H2OMap SWMMM for SWMM5 Analysis

One of the many key output graphics you can see both graphs and tables in InfoSWMM and H2OMap SWMM are the system processes.  You can define the processes you want to use in the Run Manager along with these hydrology options for both infiltration:
1. Green Ampt
2. Horton
3. Modified Horton 
4. CN 

and Runoff Models
1. EPA Runoff
2. CUHP
3. NRSCS Dimensionless UH
4. NRSCS Triangular UH
5. Delmarva UH
6. Clark UH
7. Snyder UH
8. Espey UH
9. San Diego Modified Rational Method
10.  Modified Rational Method
11. Santa Barbara UH

You can see the process flows in the System Output Graphs and Reports.


System Process tables



System Process Graphs and Run Manger for Process Flow Selection

Thursday, July 16, 2015

Innovyze Tweets from My Twitter Widget

Innovyze Tweets from My Twitter Widget

Wednesday, July 15, 2015

H2S Modeling in an InfoSWMM Pond

The control of odorous gases and the corrosion of sewers are the two most important problems in operating wastewater collection systems.  H2S is the most commonly known and prevalent odorous gas associated with domestic wastewater collection and treatment systems.  InfoSewer. InfoSWMM, H2OMap SWMM or H2OMAP Sewer suite gives wastewater engineers a powerful Operations and Maintenance (O&M) tool to readily model and analyze entire sewer collection systems for sulfide generation and corrosion potential under varying conditions anticipated throughout the life of their systems. H2S  predicts sulfide buildup in sewer collection systems for gravity sewers, force mains, and wet wells using the Pomeroy-Parkhurst equations. This unique and powerful tool enables wastewater utilities to pinpoint odor and corrosion problems, develop effective monitoring programs, alert plant operators and sewer maintenance workers to potential danger and the need to observe safety practices, and evaluate and implement effective control system such as aeration, chlorination, and mechanical cleaning.
Modeling of hydrogen sulfide using H2S Detector requires minimal input data from the user. The required data include:
Lightning average daily temperature for the region (in degrees C).
Lightning reaction rate coefficient (per day) which was described above in relation to BOD modeling.
Lightning pH of the wastewater. The normal pH range of municipal wastewater is 6.0 to 8.0.
Lightning effective sulfide flux coefficient  for sulfide generation by the slime layer in gravity sewers (meter/hour). For conservative analysis (i.e., observed sulfide buildup generally less than predicted), the suggested values of this parameter is 0.00032.
Lightning a dimensionless coefficient to account for sulfide losses by oxidation and escape to atmosphere. For conservative analysis (i.e., observed sulfide buildup generally less than predicted), the suggested values of this parameter is 0.64. For moderately conservative analysis a value of 0.96 is suggested.
Lightning logarithmic ionization constant for hydrogen sulfide (unit less), a function of temperature and specific electrical conductance of the waste water. Its value generally varies from 6.67 (at a temperature of 40oC and specific electrical conductance of 50, 000 micromhos/cm) to 7.74 (at a temperature of 10oC and specific electrical conductance of 0 micromhos/cm).
Lightning percent of total sulfides that occur in the soluble (dissolved) form for the wastewater, most frequently known to vary from 70 to 90 percent.
The default values used by the model for these inputs are shown in the following dialog box. In addition to the listed data, the user has to supply initial concentration of total sulfides and ultimate BOD of  the wastewater. These two variables could be assigned using the quality tab available at the top of the attribute browser, for one source node at a time, or using the " Group Edit on Domain" feature that enables simultaneous assignment of the two variables for all source nodes in the domain.
InfoSWMM or H2OMap SWMM S and BOD5 Parameters
InfoSWMM or H2OMap SWMM S and BOD5 Parameters
How the H2S concentration changes with an increase in Pond Area.
How the H2S concentration changes with an increase in Pond Area.

An Important Tweet from @InnovyzePatrick about the Innovyze Blogs and Forums

Have questions about @Innovyze Software? Visit our Blog http://t.co/dTkWWJbzqe & Forums http://t.co/zAkrrnsNBZ pic.twitter.com/NmVpC6YYEN
— Patrick Moore (@InnovyzePatrick) July 15, 2015

Simulation Task Manager in InfoSWMM and H2OMap SWMM

Several factors can effect the processing time needed to run simulations of sewer networks including computer hardware, simulation timestep, reporting timestep, size of the network, length of simulation, sophistication of the simulation (e.g. controls, 2D) etc. Even though our products utilize the most robust solution engines possible, simulations can take a while to complete. Simulation Task Manager allows you to disconnect the simulation of modeling scenarios from other modeling work so that you can be more productive while simulations are running.

Simulation Task Manager allows you to:
  1. Start, pause and delete scheduled simulations 
  2. View summary and detailed information about each scheduled simulation 
  3. Continue to process simulation tasks without the model open that scheduled the simulation
Using Simulation Task Manager will greatly enhance your ability to be productive when working with simulations that take a long time to complete. This technical advancement once again shows the dedication of Innovyze(R) Inc. to providing the best and most advanced tools possible to modeling professionals.

Please note: This help file applies to both InfoSWMM and H2OMap SWMM which share the same underlying engine and graphics.

lnnovyze lnfoSWMM® is an Esri ArcMap Extension and H20MAP SWMM® is a standalone program, both of which use the same USEPA SWMM5 engine. They also work from a set of Dynamic Link Libraries (DLLs) that reside in the Windows Program Files folder. As a common method to process files, the DLL'S work with various Graphic User Interface(GUI) components so several applications may utilize the same functionality. Therefore, while the GUls for lnfoSWMM and H20MAP SWMM are different, both programs use the same Database drivers and Dynamic Link Libraries (DLLs) to produce results. This ensures you receive identical output across lnfoSWMM and H20MAP SWMM because the underlying Database, Computational Engine and Results DLL program files are identical.


Copyright © Innovyze 2015. All rights reserved. 

Innovyze Help File Updated August 1, 2015 

InfoSWMM and H2OMap SWMM are based on EPA SWMM 5.1.010 

More Questions? Further Help Can be Found by Emailing us at Support@Innovyze.com

Wednesday, July 8, 2015

The Advanced Tab in InfoSWMM and H2OMap SWMM - how do I control the Size of my Output File?

The Advanced Tab in InfoSWMM and H2OMap SWMM 


3/ Save Domain saves only the saved Domain at each report time step for InfoSWMM and H2OMap SWMM pic.twitter.com/fLLjhSxuLv
— Robert Dickinson (@InnovyzeRobert) July 8, 2015

4/ Save Selection Set saves only a previous Domain at each report time step for InfoSWMM and H2OMap SWMM pic.twitter.com/mcr9m8cndm
— Robert Dickinson (@InnovyzeRobert) July 8, 2015

Tuesday, June 9, 2015

InfoSWMM Now Supports EPA SWMM-CAT, Enabling Modeling of Future Climate Change Projections

Innovyze Press Release
 Insider BlogLinkedInTwitterYouTubeYouTube
InfoSWMM Now Supports EPA SWMM-CAT, Enabling Modeling of Future Climate Change Projections
Direct Support to SWMM-CAT Power Communities in Assessing Impact of Future Changes in Climatic Conditions and Helping to Build Safer, Sustainable, More Resilient Water Infrastructure
Broomfield, Colorado, USA, June 9, 2015 — In its ongoing quest to equip the water industry with the world’s most comprehensive and innovative smart network modeling and management solutions, Innovyze, a leading global innovator of business analytics software and technologies for smart wet infrastructure, today announced that InfoSWMM (and H2OMAP SWMM) now fully support the newly released USEPA Storm Water Management Model Climate Adjustment Tool (SWMM-CAT). This important capability allows users of InfoSWMM (and H2OMAP SWMM) to directly estimate future changes in temperature, evaporation and rainfall for simulation modeling.

The SWMM-CAT tool provides a set of location-specific adjustments derived from global climate change models run as part of the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project Phase 3 (CMIP3) archive. These are the same climate change simulations that helped inform the United Nations Intergovernmental Panel on Climate Change in preparing its Fourth Assessment report. SWMM-CAT and the USEPA Stormwater Calculator for Low Impact Development simulation are both part of the President’s Climate Action Plan.

Built atop ArcGIS (Esri, Redlands, CA), the full-featured InfoSWMM analysis and design program delivers the highest rate of return in the industry. All operations of a typical sewer system — from analysis and design to management functions such as water quality assessment, pollution prediction, sediment transport and deposition, urban flooding, real-time control, and record keeping — are addressed in a single, fully integrated geoengineering environment. The program’s powerful hydraulic and water quality computational engine is based on the latest SWMM 5.1 version, which is endorsed by the USEPA and certified by FEMA. These features and more deliver an enhanced modeling experience and greater realism of displayed results — advantages that translate to increased productivity, reduced costs, higher accuracy, better efficiency, and improved designs.

InfoSWMM also serves as a robust base platform for advanced modeling, operational, short-term and long range planning, capital planning, urban stormwater treatment and analysis, and analytics-driven asset management extensions. Some of these critical applications include InfoSWMM 2D (two-dimensional surface flood modeling),CapPlan (risk-based capital planning and asset performance modeling), InfoSWMM Sustain (optimal selection and placement of LIDs/BMPs), InfoSWMM SFEM (dynamic sewer flow estimation model), InfoMaster (GIS-centric analytics-driven asset management), and RDII Analyst (rainfall-dependent inflow and infiltration planning and analysis).

“Our priorities have always been to advance the frontiers of smart network modeling technology and support our customers’ successes by helping them better prepare for climate impacts and build safer, better water infrastructures,” said Paul F. Boulos, Ph.D., BCEEM, Hon.D.WRE, Dist.D.NE, Dist.M.ASCE, NAE, President, COO and Chief Technical Officer of Innovyze. “This direct support to the EPA Storm Water Management Model Climate Adjustment Tool delivers on our promise to equip our customers with the ultimate geospatial decision support tool for evaluating, addressing and managing climate change risks for more resilient, sustainable sewer collection and urban drainage systems.”

Pricing and Availability
Upgrade to InfoSWMM and H2OMAP SWMM (V13, SP 1, Update 4) for SWMM-CAT support is now available worldwide by subscription. Subscription members can immediately download the new version free of charge directly from www.innovyze.com. The Innovyze Subscription Program is a friendly customer support and software maintenance program that ensures the longevity and usefulness of Innovyze products. It gives subscribers instant access to new functionality as it is developed, along with automatic software updates and upgrades. For the latest information on the Innovyze Subscription Program, visit www.innovyze.com or contact your local Innovyze Channel Partner.
About Innovyze
Innovyze is a leading global provider of wet infrastructure business analytics software solutions designed to meet the technological needs of water and wastewater utilities, government agencies, and engineering organizations worldwide. Its clients include the majority of the largest UK, Australasia and North American cities, foremost utilities on all five continents, and ENR top-rated design firms. With unparalleled expertise and offices in North America, Europe, and Asia Pacific, the Innovyze connected portfolio of best-in-class product lines empowers thousands of engineers to competitively plan, manage, design, protect, operate and sustain highly efficient and reliable infrastructure systems, and provides an enduring platform for customer success. For more information, call Innovyze at +1 626-568-6868, or visit www.innovyze.com.
Innovyze Contact
Rajan Ray
Director of Marketing and Client Service Manager

Sunday, May 17, 2015

Manhole Elevations in InfoSWMM and SWMM 5

Manhole Elevations in InfoSWMM and SWMM 5
Subject: Manhole Elevations in InfoSWMM and SWMM 5
Starting from the bottom of the manhole you have these regions of computational interest:
1.   Manhole Invert to the lowest link invert – the node continuity equation is used with the area of the manhole being the default surface area of a manhole,
2.   Lowest Link Invert to the Highest Link Crown Elevation – the node continuity equation is used with surface of the node being normally half of the surface area of the incoming and outgoing links,
3.   Highest Manhole Pipe Crown Elevation to Manhole Rim Elevation – the node surcharge algorithm in which the surface area of the manhole is not used and the surcharge depth is iterated until the inflow and the outflows of the node are in balance,
4.   The region above the Manhole Rim Elevation which can use one of four options to calculate the depth and/or flow out of or into the manhole:
1.   No Surcharge Depth is entered and No Ponding area is used – the excess water into the manhole is lost to the network and shows up as internal outflow in the continuity tables,
2.   A Ponding Area is used and the excess flow will  pond on the surface of the manhole and later go back down into the conveyance pipes.
3.   A Surcharge Depth is used and the depth will continue to be calculated using the node surcharge algorithm in which the surface area of the manhole is not used and the surcharge depth is iterated until the inflow and the outflows of the node are in balance,
4.   A Dual Drainage system is simulated and the excess flow of the manhole is simulated in the street gutters or the actual street,
5.   You use a 1D/2D linkage between the 1D manhole and 1D links to a 2D Mesh and simulate the flow out and the flow into the manhole using a bottom outlet orifice that switches automatically between weir and orifice flow based on the depth on top of the manhole.
Manhole Elevations in InfoSWMM and SWMM 5


How to Import the SWMM 5 Report File as a Layer in infoSWMM


How to Import the SWMM 5 Report File as a Layer in infoSWMM


Subject:  How to Import the SWMM 5 Report File as a Layer in infoSWMM
The idea of this blog of note is to show how one may extract information from the SWMM 5 or InfoSWMM RPT file and import the Excel  File as a feature in InfoSWMM.  This blog has an example Excel file to illustrate the linkage. The steps are:
Step 1:  Copy the whole row  from Conduit Summary from the InfoSWMM Browser  
Step 2:  Add the two columns length and  slope from the Link Summary Table and the InfoSWMM Browser  
Step 3:  You need a few calculations based on the table values from SWMM 5 to estimate the CFL  time steps in the .  
Step 4:   Add the Excel Spreadsheet as a layer in InfoSWMM – the Named Range should be added to insure valid numbers and not Nulls after the join  
Step 5:  You can now plot the CFL Time Step for the Links using the Layer Properties command in Arc Map 
Step 1:  Copy the whole row  from Conduit Summary
Step 2:  Add the two columns length and  slope from the Link Summary Table
Step 3:  You need a few calculations based on the table values from SWMM 5 to estimate the CFL  time steps.
The CFL Step      = Length / (Full  Velocity + (Gravity * Full Depth)^0.5)
Full Velocity        = Full Flow / Full  Area
You also need to create a Name A Range for you data so that the data does not show up as Nulls
 Step 4:  Add the Excel Spreadsheet as a layer in InfoSWMM – the Named Range should be added
Step 4:  Join the Excel  Table to the InfoSWMM Conduit Feature Layer
Step 5:  You can now plot the CFL Time Step for the Links using the Layer Properties command in Arc Map
  

Saturday, May 16, 2015

To My Visitors - Visitor Stats for SWMM5.NET

If you ever wondered how many people visit SWMM5.NET it is currently 1500 sessions, 1200 users and 2500 pageviews per month according to the ever changing Google Analytics.  Thanks to one and all for visiting!


AI Rivers of Wisdom about ICM SWMM

Here's the text "Rivers of Wisdom" formatted with one sentence per line: [Verse 1] 🌊 Beneath the ancient oak, where shadows p...