Friday, July 6, 2012

How Does the Green Ampt Initial Moisture Deficit Work in SWMM 5?

Subject:   How Does the Green Ampt Initial Moisture Deficit Work in SWMM 5?

How Does the Green Ampt Initial Moisture Defiict Work in InfoSWMM and SWMM 5?

by dickinsonre
Subject:   How Does the Green Ampt Initial Moisture Defiict Work in InfoSWMM and SWMM 5?

This graph shows the values of the internal SWMM 5 parameters for Green Ampt Infiltration for the pervious area of a Subcatchment during a simulation.  The parameters are:

·         Soil Moisture = IMD Max – (FUMax – FU)/Upper Soil Zone Depth
·         FU or current moisture content of the upper zone of the of the soil
·         FUMax which is the saturated moisture content of the upper zone in feet and stays constant during the simulation
·         IMD Max is the user defined Initial soil moisture deficit and is a fraction

Figure 1.  How Soil Moisture changes over time.

Figure 2.  Soil Moisture and IMD are related – the Soil Moisture has a maximum of IMDMax.


How Does Green Ampt Cumulative Event Infiltration work in SWMM 5?

Subject:   How Does Green Ampt Cumulative Event Infiltration work in SWMM 5?

How Does Green Ampt Cumulative Event Infiltration work in SWMM 5?

by dickinsonre
Subject:   How Does Green Ampt Cumulative Event Infiltration work in SWMM 5?

This graph shows the values of the internal SWMM 5 parameters for Green Ampt Infiltration for the pervious area of a Subcatchment during a simulation.  The parameters are:

·         F or FTOT which is the cumulative event infiltration at the start of a time interval in the internal units of feet in SWMM 5,
·         FU or current moisture content of the upper zone of the of the soil
·         FUMAX which is the saturated moisture content of the upper zone in feet and stays constant during the simulation 
Figure 1.  How FTOT, FU and F change over time
Figure 2.  A closer look at how FTOT or F and FU Change over time in a Green Ampt Pervious Area Simulation.



Wednesday, July 4, 2012

How are Negative Transect Elevations Used in SWMM5?

Subject:   How are Negative Transect Elevations Used in SWMM5? 

How are Negative Transect Elevations Used in SWMM5?

by dickinsonre
Subject:   How are Negative Transect Elevations Used in SWMM5?

You can have negative elevations in the Transects of SWMM 5 as the elevations are transformed internally to relative depths above the node inverts in the SWMM 5 engine (Figure 1).   The slope of the link is calculated from the link offset elevations (Figure 3) and the cross sectional information for the irregular link in SWMM 5 (Figure 2) is computed from the Transect data (Figure 4).   The Water Surface elevation of the link is based on the node inverts (Figure 5).


Figure 1.  Transect Editor of SWMM 5


Figure 2.  The Transect Data is Used in the Irregular of HEC-RAS Shape of SWMM 5

Figure 3.  The slope of the link with the Transect is calculated from the link upstream and downstream offset elevations – not the Transectdata which is relative.

Figure 4.  Transect Data Transformed into Tables of Area, Hydraulic Radius and Width from the Transect Data internally in SWMM 5.



Figure 5.  HGL of the Water Surface Elevation from the Node Invert and Link Offset Elevations.



  









LID and BMP Modeling in InfoSWMM and H20Map SWMM

Subject:   LID and BMP Modelling in InfoSWMM and H20Map SWMM

LID and BMP Modeling in InfoSWMM and H20Map SWMM

by dickinsonre
Subject:   LID and BMP Modelling in InfoSWMM and H20Map SWMM
 The attached PDF file describes some of the Low Impact Modeling and Best Management Practice modeling options in InfoSWMM and H2OMap SWMM (Figure 1)
Low Impact Development (LID)                                                           Page 3
Low Impact Development (LID)                                                           Page 4
LID Controls and Connection to the Subcatchments                   Page 5
Simulation Options for LID's                                                                 Page 6
Water Quality Features                                                                             Page 7
External Loading Buildup                                                                    Page 8
Simulation Options for Quality                                                            Page 9
Buildup/Washoff Options                                                                    Page 10
LID's are Unlimited Per Subcatchment                                            Page 11
Map Display of the Number of Units per Subcatchment                Page 12
LID Controls in DB Tables                                                                   Page 13
LID Layers                                                                                            Page 14
LID Storage Layer                                                                                    Page 15
LID Process Components Page                                                            Page 16
LID Processes                                                                                           Page 17
LID Usage in DB Tables                                                                         Page 18
LID Usage at the Subcatchments                                                        Page 19
Rain Barrel LID                                                                                        Page 20
Swale LID                                                                                                   Page 21
Components Per Subcatchment                                                       Page 22
LID Report Variables                                                                           Page 23
LID Report Text File                                                                            Page 24
LID Summary Report                                                                          Page 25
LID Report at a Time Step                                                                   Page 26
LID Graphs by Subcatchment                                                              Page 27
LID Import and Export to SWMM                                                         Page 28

 Figure 1.  LID Options include on a Subcatchment include Rain Barrels, Bio-Retention Cells, Infiltration Trench, Porous Pavement and Vegetative Swales



d

Steps in Using RDII Analyst for InfoSWMM, ICM and InfoSewer

Subject:  Steps in Using RDII Analyst for InfoSWMM, ICM and InfoSewer


Steps in Using RDII Analyst for InfoSWMM, ICM and InfoSewer

by dickinsonre
Subject:  Steps in Using RDII Analyst for InfoSWMM, ICM and InfoSewer 
Step 1: Create a Base UH  in the Operation Tab of the Attribute Browser using RDII Analyst (Figure 1)
Step 2: Assign a UH to at Least 1 Node Using the Inflow Icon  
Step 3: Open Up RDII Analyst and Click on New to Create a RDII Session    
Step 4: Define the Flow and Rainfall File     
Step 5: Review the Imported Flow Time Series Step 6: Review the Imported Rainfall  Time Series          
Step 7: Units and RDII Analyst Dates are Controlled by the Simulation Manager   
Step 8: Extract DWF from the Flow Time Series    
Step 9: Assign a UH to at Least 1 Node Using the Inflow Icon  
Step 10: View the DWF Pattern         
Step 11: Create the RDII Time Series          
Step 12: View the RDII Time Series   
Step 13: Run Once Feature to See how Good the Current RTK Parameters are in matching the monitored flow
Step 14: You can use Graph Control to show the mean of the Observed and Predicted RDII on one Graph.        
Step 15: Calibrate the RTK Parameters        
Step 16: Run the GA 
Step 17: Assign the Intermediate Answers  to the UH     
Step 18: View the Calibration Graph  
Step 19: Event Identification   
Step 20: Assign the Found DWF Pattern     
Step 21: Node DWF and RDII Inflow
Step 22: 3 RDII UH's Used in the Simulation of the RDII Flows  

 Figure 1.  RDII Analyst is part of the InfoSWMM or H2OMAP SWMM Suite but the derived RTK parameters can be used in either InfoSWMM, SWMM5, ICM or InfoSewer

Monday, July 2, 2012

FEMA, SWMM 5, 2D and LID in InfoSWMM

This circular time line graph shows there has been 11 versions of InfoSWMM with Low Impact Development (LID) modeling features and 2D mesh simulation added for InfoSWMM v10.  The LID modeling features were added to EPA SWMM 5.0.019.  EPA SWMM 5 has been accepted by FEMA since SWMM 5.0.05 and InfoSWMM Models exported to EPA SWMM 5 have been accepted by FEMA since InfoSWMM v4.


Saturday, June 30, 2012

How does the Infiltration Maximum Time to Drain the Upper Soil Zone Work in SWMM 5 Green Ampt?

Subject:  How does the Infiltration Maximum Time to Drain the Upper Soil Zone Work in SWMM 5 Green Ampt?

How does the Infiltration Maximum Time to Drain the Upper Soil Zone Work in SWMM 5 Green Ampt?

by dickinsonre
Subject:  How does the Infiltration Maximum Time to Drain the Upper Soil Zone Work in SWMM 5 Green Ampt?

You can use the monthly soil recovery factor (Figure 1) in SWMM 5 to change how the Infiltration Maximum Time to Drain the Upper Soil Zone (Figure 2) is computed each month during a continuous simulation. 

The  depth of the upper soil zone in the internal  SWMM 5 units of feet is calculated at the start of the simulation based on the Green Ampt Soil Saturated Hydraulic Conductivity

Upper Soil Zone Depth = 4  * (Soil Saturated Hydraulic Conductivity * 12 * 3600)^0.5 / 12

And the Upper Zone Moisture Depletion Factor  and Infiltration Maximum Time to Drain the Upper Soil Zone is calculated at each hydrology time step in SWMM 5.

Upper Zone Moisture Depletion Factor  = Upper Soil Zone Depth / 300 * 12 /3600 * Monthly Evaporation Recovery Factor

Infiltration Maximum Time to Drain the Upper Soil Zone = 6 / (100 * Upper Zone Moisture Depletion Factor  )

Figure 1.  Monthly Soil Recovery Factor


Figure 2.  Infiltration Maximum Time to Drain the Upper Soil Zone for a Subcatchment



Sunday, June 24, 2012

A Canopy of Man-Made Solar-Powered Supertrees Flourishes in Singapore

A Canopy of Man-Made Solar-Powered Supertrees Flourishes in Singapore


A national park filled with electrified, man-made trees sounds like a paradox. But Singapore’s latest landscaping project, a 250-acre site called Gardens by the Bay, mixes nature and mechanics with an "artificial forest" full of glowing trees, globally-sourced plants, heritage vegetation, and a conservatory built around a 35-meter mountain complete with the world's tallest indoor waterfall. The project is pushing the boundary of what an urban park can be.
On June 29, Singapore’s National Parks Board will open a section of this project, called Bay South Garden, to the public, welcoming visitors to 18 just-installed "Supertrees," climbing to 50 meters in height.
"Many countries now do tree-planting and call themselves garden cities," CEO of Gardens by the Bay, Dr. Kiat Tan explained in a 2011 speech. "To retain our edge and continue to improve our living environment, we have been transforming Singapore into a City in a Garden."
The man-made canopy, much like its natural counterparts, will serve as air venting ducts for nearby conservatories, collect rainwater, and provide shade to park tourists. Eleven of the Supertrees are adorned with photovoltaic cells that will harvest solar energy to light up the trees in the evening, providing energy and lighting, to conservatories throughout the park, and serving as air and temperature regulators.
The massive structures are also vertical gardens, dressed in a living bouquet of climbing flowers, ferns, and bromeliads from around the world. Come evening, these trees will regale the park with light and sound shows. Visitors can look on from a new "Skyway" bridge connecting two 25-meter trees.
The project was commissioned by the National Parks Board to redevelop Singapore’s south side Marina Bay area and designed by UK architectural firm Grant Associates. Once completed, the Gardens by the Bay hopes to become an eco-attraction that showcases not only a collection of plants from around the world, but also the innovative uses of green technology.
Photos from Gardens by the Bay

Saturday, June 23, 2012

What are the Equations for Weirs in SWMM 5, Part 2?

Subject:   What are the Equations for Weirs in SWMM 5, Part 2?

What are the Equations for Weirs in SWMM 5, Part 2?

by dickinsonre
Subject:   What are the Equations for Weirs in SWMM 5, Part 2?
 There are four types of Weirs in SWMM 5:  Transverse, Sideflow, V Notch and Trapezoidal.   The trapezoidal weir is a combination of the Sideflow and V Notch Weir and the Sideflow acts like a Transverse Weir when the flow is reversed (Figure 1).  The Weirs can have zero, one or two end contractions (Figure 2) and the Weir Length is a function of the Weir Setting and Horizontal Weir Length.  A V Notch weir works as Trapezoidal Weir when the Weir RTC Setting is less than 1.0 
 Figure 1.   Weir Equations in SWMM 5
 Figure 2.   Valid Number of End Contractions
 
Figure 3.  Weir Length Calculations
 

Water Quality Treatment Removal Variables in SWMM5

Subject:    Water Quality Treatment Removal Variables in SWMM5

Water Quality Treatment Removal Variables in SWMM5

by dickinsonre
Subject:    Water Quality Treatment Removal Variables in SWMM5

The treatment variables for Water Quality in a SWMM 5 storage unit (Figure 1) can be either: 
1.       A Process Variable
a.       HRT or Hydraulic Residence Time
b.      DT or Time Step
c.       FLOW or The Current Inflow
d.      DEPTH or the Mean Flow over the Time Step
e.      AREA or the Mean Area over the Time Step
2.       Pollutant Concentration
3.       Pollutant Removal based on the Removal of Other Pollutants 
With a Wide Range of Treatment Functions (Figure 2).

Figure 1.  SWMM 5 Treatment Variable Names in the Treatment Equation
Figure 2.   Treatment Functions in SWMM 5

What are the Equations for Weirs in SWMM 5?

Subject:   What are the Equations for Weirs in SWMM 5?

There are four types of Weirs in SWMM 5:  Transverse, Sideflow, V Notch and Trapezoidal.   The trapezoidal weir is a combination of the Sideflow and V Notch Weir and the Sideflow acts like a Transverse Weir when the flow is reversed (Figure 1).

Figure 1.   Weir Equations in SWMM 5
Weir Equations in SWMM 5



Friday, June 22, 2012

Toilets Save Lives

Toilets Save Lives

Erika Christakis advocates for better sanitation. She points out that the "impact of poor sanitation — and its economic consequences — is well-known": Source, The Dish
So why hasn’t this become an issue of global concern? Instead, between 1997 and 2008, the percentage of international aid that went to sanitation and water fell from 8% to 5%. Concerns over safe drinking water get much more attention, despite a recent World Bank study that found a more pronounced impact on health from building toilet infrastructure than from drinking-water improvements. Few people enjoy talking about bodily functions, and it’s hard for emerging economies to get excited about pit latrines and compost toilets when they’d rather showcase their shiny new buildings and high-speed trains. Feces and open sewers are a hard sell for donors too. There’s no pretty logo — no babbling brook or fresh water spring — for a toilet.

Thursday, June 21, 2012

Convolution of the RDII UH from R, T and K in SWMM 5

Subject:  Convolution of the RDII UH from R, T and K in SWMM 5

Convolution of the RDII UH from R, T and K in SWMM 5

by dickinsonre
Subject:  Convolution of the RDII UH from R, T and K in SWMM 5

The convolution uses the value of R and the Time Base to estimate the amount of Infiltration and Inflow in the Sewer Network.  The short, medium and long term UH's are estimated at each Wet Hydrology time step to make a smooth hydrograph out of the R, T and  K parameters of the Rainfall Dependent Infiltration and Infiltration Method (Figure 1).  The three UH's can be displaced as well if you use the RTK storage parameters (Figure 2)

Figure 1.  The short, medium and long UH's are convoluted in SWMM 5 from the Rainfall Time Series.
Figure 2.   The Initial Abstraction Depth can be used to shift the generated UH in time or reduce the peak flow and total volumes.

c.

Introduction to Scenarios in ICM

### Introduction to Scenarios in ICM In network modeling software like InfoWorks ICM, scenarios are a powerful feature that allows users to ...