Showing posts with label SWMM5. Show all posts
Showing posts with label SWMM5. Show all posts

Wednesday, December 21, 2022

Degree day snowmelt in SWMM5

 Degree day snowmelt is a method of predicting the rate at which snow will melt based on temperature. It is often used by utilities, highway departments, and other organizations to predict the amount of snowmelt runoff that will occur during the spring thaw.

To use degree day snowmelt, you need to know the average daily temperature and the base temperature for snowmelt. The base temperature is the temperature at which snowmelt begins to occur. It is typically between 32 and 35 degrees Fahrenheit, depending on the type of snow and the location.

To calculate the degree days for snowmelt, you will need to subtract the base temperature from the average daily temperature for each day. For example, if the base temperature is 32 degrees Fahrenheit and the average daily temperature is 40 degrees Fahrenheit, the degree days for snowmelt would be 8 (40 - 32 = 8).

Once you have calculated the degree days for each day, you can use a degree day snowmelt model to predict the rate at which the snow will melt. Several different models are available, each with its own set of equations and input parameters. Some models may also require additional data, such as the depth of the snowpack or the type of soil beneath the snow.

It's important to note that degree-day snowmelt models are based on statistical averages and are intended to provide a general estimate of snowmelt runoff. Actual snowmelt rates may vary due to factors such as the type of snow, the amount of sunshine, and other weather phenomena such as rain or wind.

Saturday, November 5, 2022

SWMM3 Manual

I saw this in the 1981 #SWMM3 manual by authors Wayne C. Huber, James P. Heaney, Stephan J. Nix, Robert E. Dickinson and Donald J. Polmann, UF about documenting code. Note the large 400K size of the program as well.
Image

Importing InfoSWMM and SWMM5 to ICM SWMM Networks

 InfoSWMM_ICM_SWMM_InfoWorks in three minutes youtu.be/e9zq3UHFVWM via

Force Main hydraulic theory and how force mains are simulated in ICM, #SWMM5, #ICM_SWMM and XPSWMM - Emoji View

🚀 Force Main Hydraulics: A Dive into Theory and Simulation 🌊

Mel Meng's recent post is nothing short of enlightening! 🧠✨ Merging the intricacies of Force Main hydraulic theory with real-world simulation in tools like ICM, #SWMM5, #ICM_SWMM, and XPSWMM, Mel offers a comprehensive look at the subject. What stands out is his knack for blending theory with User Experience (UX), the magic of #Python 🐍, and the open-source wonders of #github 🖥️.

🔗 Dive into his insights here: LinkedIn Post

Want a more visual treat? 🎥 Check out this illustrative YouTube video that expands on his blog and code: Watch Now

Stay curious and keep exploring! 🌟🔍📚

Wednesday, August 16, 2017

#SWMM 5 LID 185 message

Here are the soil layer rules for LID’s in SWMM5....  If any of these are wrong you will get an Error 185 message

Soil Porosity > Field Capacity > Wilting Point

    //... check soil layer parameters
    if ( LidProcs[j].soil.thickness >= 0.0; 0.0 )
    {
        if ( LidProcs[j].soil.porosity      <= 0.0 
        ||   LidProcs[j].soil.fieldCap      >= LidProcs[j].soil.porosity
        ||   LidProcs[j].soil.wiltPoint    >= LidProcs[j].soil.fieldCap
        ||   LidProcs[j].soil.kSat            <= 0.0
        ||   LidProcs[j].soil.kSlope       <= 0.0 )


Monday, September 5, 2016

How to See the Highest Continuity Errors Table in the Output Report Manager for #InfoSWMM

How to See the Highest Continuity Errors Table in the Output Report Manager for #InfoSWMM
In the output text report file of infoSWMM and H2OMap SWMM there is the Highest Node Continuity Error Table. The Table shows the highest 20 Nodes for percent node continuity errors and the actual continuity error as defined by Node Outflow – Node Inflow. This table is also shown in the Output Report Manger table 
The same value of Node Outflow – Node Inflow is shown in the Junction Summary table under the column flow volume difference. The units of flow volume difference will be the same as the RPT file if the units are changed in the Output Unit Manger.
How to change the volume units in the Output Unit Manger. Change the volume to MG or ML (for SI units).
The flow volume difference can also be seen in Map Display by picking the Active Output variable Vol_Diff or Flow Volume Difference.

Saturday, September 3, 2016

How to Rectify Offset Issues in InfoSWMM and H2OMap SWMM

How to Rectify Offset Issues in InfoSWMM and H2OMap SWMM
1. Use Tool preferences to use elevation Rim Elevations (instead of depths) and elevation link offsets (instead of depths)
2. Once these flags are set you need to divide all of the link offsets by 2 to get the original values
3. The node and links should be correct
4. Check a portion of your model using the Input HGL tool to see if the offsets make sense
5. You should always check to see if you have the right elevation preferences
a. Offsets of depth and Node Max Depth or
b. Offsets of absolute elevation and Rim Absolute Elevations instead of Depths

Monday, May 16, 2016

Annotated PID Controller in SWMM5 and InfoSWMM

How does a PID controller work in  InfoSWMM  and SWMMM 5 - this also applies to H2OMap SWMM??
double getPIDSetting(struct TAction* a, double dt)   //  at each time  step find  the PID control  changes for the  current  time step dt
// Input: a = an action object
// dt = current time step (days)
// Output: returns a new link setting
// Purpose: computes a new setting for a link subject to a PID controller.
pid1
// Note: a->kp = gain coefficient,
// a->ki = integral time (minutes)
// a->k2 = derivative time (minutes)
// a->e1 = error from previous time step
// a->e2 = error from two time steps ago
{
double e0, setting;
double p, i, d, update;
double tolerance = 0.0001;
// --- convert time step from days to minutes
dt *= 1440.0;
// --- determine relative error in achieving controller set point
// Or how close are we to the set point?
PID2
e0 = SetPoint - ControlValue;
if ( fabs(e0) > TINY )
{
if ( SetPoint != 0.0 ) e0 = e0/SetPoint;
// now alter the  value of e0
PID3
else e0 = e0/ControlValue;
}
// --- reset previous errors to 0 if controller gets stuck
if (fabs(e0 - a->e1) < tolerance)
{
a->e2 = 0.0;
a->e1 = 0.0;
}
// --- use the recursive form of the PID controller equation to
// determine the new setting for the controlled link
Here is a view of the p, i and d PID internal  parameters https://www.wikiwand.com/en/PID_controller
A block diagram of a PID controller in a feedback loop
A block diagram of a PID controller in a feedback loop
p = (e0 - a->e1);
pid5
ki, id,  kp are  user  inputs  in InfoSWMM and SWMM5 or from the  EPA SWMM  5 Help  File2016-05-16_0548.png
if ( a->ki == 0.0 ) i = 0.0;
else i = e0 * dt / a->ki;
pd8.png
d = a->kd * (e0 - 2.0*a->e1 + a->e2) / dt;
pid9
update = a->kp * (p + i + d);
if ( fabs(update) < tolerance ) update = 0.0;
setting = Link[a->link].targetSetting + update;
pid7
// --- update previous errors
a->e2 = a->e1;
a->e1 = e0;
// --- check that new setting lies within feasible limits
// If  the link  is not a pump then the  setting must be between 0 and 1
if ( setting < 0.0 ) setting = 0.0;
if (Link[a->link].type != PUMP && setting > 1.0 ) setting = 1.0;
return setting;}

Tuesday, March 15, 2016

Innovyze Further Expands RDII Analyst Functionality, Setting New Standard for Sanitary and Combined Sewer System Model Calibration

Innovyze Further Expands RDII Analyst Functionality, Setting New Standard for Sanitary and Combined Sewer System Model Calibration

New Features Allow Unprecedented Analysis and Comparison of Rainfall-Derived Inflow and Infiltration Data, Parameters for Complex Sewers

Broomfield, Colorado, USA, March 15, 2016

Innovyze, a leading global innovator of business analytics software and technologies for smart wet infrastructure, today announced the newest release of its RDII Analyst (Rainfall-Derived Inflow and Infiltration) for InfoSWMM and H2OMAP SWMM. The new version delivers expanded functionality, incorporating many advanced Genetic Algorithm (GA) optimization features. It increases its unmatched productivity by making it easy for users to further adjust the dry weather flow (DWF) and RTK parameters (with initial and maximum monthly storages for continuous simulation) to achieve a better fit and ultimately a better model based on their experiences. The release confirms Innovyze’s commitment to giving the world the most complete toolset for modeling current sanitary and combined sewer collection systems.

Excessive wet weather flow from rainfall-derived manhole and pipe defect inflow and infiltration is a major source of sanitary and combined sewer overflows. Controlling these overflows is vital in reducing risks to public health and protecting the environment from water pollution. Computer modeling plays an important role in determining sound and economical remedial solutions that reduce RDII; improve system integrity, reliability and performance; and avoid overflows.

The processes for converting rainfall to RDII flow in sanitary sewer systems are very complicated. In addition to rainfall and antecedent moisture conditions, factors controlling RDII responses include depth to groundwater, depth to bedrock, land slope, number and size of sewer system defects, type of storm drainage system, soil characteristics, and type of sewer backfill. Given this degree of complexity, flow-monitoring data must be combined with mathematical modeling and analytics to provide accurate results. The wastewater flow monitoring data obtained by sewer collection systems consists of dry-weather flow components, ground water flow and twelve (12) RDII flow components. A crucial step in successfully modeling sewer collection systems is the ability to decompose flow-monitoring data into RDII flow, ground water flow and dry weather flow and its flow pattern.

Significantly superior to the EPA Sanitary Sewer Overflow Analysis and Planning (SSOAP) program and powered by advanced GA optimization and comprehensive data analytics and scenario management, RDII Analyst provides the ability to quickly and reliably perform these types of advanced flow decomposition data monitoring. It has been updated with tabular comparisons between the observed and calibrated RDII data for each event, including R value, peak flow, hydrograph volume and depth. This allows the user to better evaluate simulated and monitored data and judge how well it correlates on a per event basis. The user can also directly edit estimated DWF mean values to apply site specific knowledge to the RDII Analyst DWF extraction algorithm. These altered DWF values can then be used to estimate the wet weather flow component of the monitored flow, using a combination of the DWF extraction algorithm and site-specific knowledge. The new version also allows direct edits to the twelve RTK and storage parameters plus manual curve fitting to apply site specific knowledge to the genetic algorithm parameter estimation. Manual curve fitting is valuable in timing differences between monitored and calibrated wet weather flow components and employing previous experience in estimating RTK parameters.

“Innovyze continues to listen to our customers, invest very heavily in R&D, and deliver the advanced tools they need to effectively support their wastewater and urban drainage modeling and management challenges,” said Paul F. Boulos, Ph.D., BCEEM, Hon.D.WRE, Dist.D.NE, Dist.M.ASCE, NAE, President, COO and Chief Technical Officer of Innovyze. “We are very excited that our vast worldwide customer base will now be able to use the powerful new features in RDII Analyst to enhance their modeling experiences, wrap better projects faster, and strengthen our communities’ sewer systems.”

Pricing and Availability
Upgrade to RDII Analyst is now available worldwide by subscription to the Executive program. Subscription members can immediately download the new version free of charge directly from www.innovyze.com. The Innovyze Subscription Program is a friendly customer support and software maintenance program that ensures the longevity and usefulness of Innovyze products. It gives subscribers instant access to new functionality as it is developed, along with automatic software updates and upgrades. For the latest information on the Innovyze Subscription Program, visit www.innovyze.com or contact your local Innovyze Channel Partner.
About InnovyzeInnovyze is a leading global provider of wet infrastructure business analytics software solutions designed to meet the technological needs of water/wastewater utilities, government agencies, and engineering organizations worldwide. Its clients include the majority of the largest UK, Australasian, East Asian and North American cities, foremost utilities on all five continents, and ENR top-rated design firms. With unparalleled expertise and offices in North America, Europe and Asia Pacific, the Innovyze connected portfolio of best-in-class product lines empowers thousands of engineers to competitively plan, manage, design, protect, operate and sustain highly efficient and reliable infrastructure systems, and provides an enduring platform for customer success. For more information, call Innovyze at +1 626-568-6868, or visit www.innovyze.com.
Innovyze Contact:Rajan RayDirector of Marketing and Client Service Manager
Rajan.Ray@innovyze.com
+1 626-568-6868
- See more at: http://www.innovyze.com/news/1667/Innovyze_Further_Expands_RDII_Analyst_Functionality,_Setting_New_Standard_for_Sanitary_and_Combined_Sewer_System_Model_Calibration#sthash.1h6ehlNs.dpuf

Wednesday, December 16, 2015

How to Tell how Long Normal Flow is used in a Link in #InfoSWMM, H2OMap SWMM w/ #SWMM5

How to Tell how Long Normal Flow is used in a Link in #InfoSWMM, H2OMap SWMM  w/ #SWMM5

Find the Fraction of Normal Flow Limited in the Flow Classification  Table and copy it to the Link Information Table - the value of FLM can then be Displayed in a Map using  the Map Display command.  In this small example, three links primarily used normal flow and one uses it for a short time. Normal flow only uses the Manning's equation and the link upstream depth, hydraulic radius and cross sectional area to compute the flow.


How to Tell how Long Normal Flow is used in a Link in #InfoSWMM, H2OMap SWMM  w/ #SWMM5
St. Venant equation solution – this is the link attribute data used when the St. Venant Equation is used in #SWMM 5. Simulated Parameters from the upstream, midpoint and downstream sections of the link are used.
Normal Flow Equation – this is the link attribute data used when the Normal Flow Equation is used in #SWMM 5. Only simulated parameters from the upstream end of the link are used if the normal flow equation is used for the time step.

Tuesday, October 13, 2015

Steps in #INFOSWMM for Using and Saving Hot Start Files for Quasi Steady State Runs

Steps in #INFOSWMM for Using and Saving Hot Start Files for Quasi Steady State Runs

1. Two Scenario's to Save and then Use a Hot Start File 

2. Save and Use the Hot Start Files 

3. Graph the Depth and Flow of the Scenario that uses the Hot Start File, the depths and flows should be connstant 

4. You can see the time step values in the Attribute Browser 

5. Map Display Depth on the Map to see the flows and depths are steady

Steps in #INFOSWMM for Using and Saving Hot Start Files for Quasi Steady State Runs 

Sunday, October 4, 2015

Components of #INFOSWMM from @Innovyze


Tweets - Components of #INFOSWMM from @Innovyze

  1. 8/ Components of from Managers of your Map and DB Data Bullet 8
  2. 7/ Components of from Map Table of Contents Map to DB Link for GIS or Bullet 7
  3. 6/ Components of from Message Box for User Information from Arc GIS or Bullet 6
  4. 5/ Components of from Tools for Adding New Map Features or Bullet 5
  5. 4/ Components of from Attribute Browser (AB) Map to DB Link or Bullet 4
  6. 3/ Components of from Spatial Analyst Components Bullet Three
  7. 2/ Components of from Genetic Algorithm Components Bullet Two
  8. 1/ Components of from Spatial Analyst Components Bullet One
  9. 1/ Components of from Spatial Analyst Components Bullet One

AI Rivers of Wisdom about ICM SWMM

Here's the text "Rivers of Wisdom" formatted with one sentence per line: [Verse 1] 🌊 Beneath the ancient oak, where shadows p...