Sunday, October 4, 2015

Components of #INFOSWMM from @Innovyze


Tweets - Components of #INFOSWMM from @Innovyze

  1. 8/ Components of from Managers of your Map and DB Data Bullet 8
  2. 7/ Components of from Map Table of Contents Map to DB Link for GIS or Bullet 7
  3. 6/ Components of from Message Box for User Information from Arc GIS or Bullet 6
  4. 5/ Components of from Tools for Adding New Map Features or Bullet 5
  5. 4/ Components of from Attribute Browser (AB) Map to DB Link or Bullet 4
  6. 3/ Components of from Spatial Analyst Components Bullet Three
  7. 2/ Components of from Genetic Algorithm Components Bullet Two
  8. 1/ Components of from Spatial Analyst Components Bullet One
  9. 1/ Components of from Spatial Analyst Components Bullet One

Tuesday, September 22, 2015

Innovyze Offers Free Industry-Leading GIS-Centric Water Network Transient Modeling Software to Universities Worldwide #INFOSURGE

Innovyze Free Offers Industry-Leading GIS-Centric Network Transient Water Modeling Software to Universities Worldwide #INFOSURGE

Free Student Edition of InfoSurge Aimed at Giving Students Hands-On Experience to Better Prepare Industry-Ready Workforce and Shape the Future

Broomfield, Colorado, USA, September 22, 2015

Continually ITS Fulfilling promise to raise the bar in water resources engineering education and expand the world of learning, Innovyze, a leading innovator of comprehensive business analytics software and technologies for wet infrastructure smart, today Announced the availability of Its industry-leading GIS-centric water transient network modeling software free to students and professors at Higher Education Institutions worldwide. Its special student edition of  InfoSurge , limited to five links, is designed to give comprehensive universities to simple, flexible way to use advanced, high performance modeling software in water Their classrooms and labs. It will enable students to learn and Develop Important skills in the design, planning, operation and management of sustainable water supply and distribution systems - skills That will help them stand out in the job market.

That Understands Innovyze civil engineering students need to be academically and professionally prepared for an engineering career. For students and professionals alike, there is no substitute for hands-on experience. Knowing This, more and more universities are helping students gain access to state-of-the-art and practical tools in the classroom Whenever needed. By tailoring Their undergraduate and graduate courses around Innovyze technology, engineering faculty members can be assured Their They are helping students get direct access to the powerful tools and latest advances in smart water modeling technology resources They need to succeed - not only in the classroom, but Ultimately as professional engineers.

"Innovyze  InfoSurge  software Utilizes the powerful Wave Characteristic Method, the fastest and Most Efficient algorithm for solving hydraulic transients in large and complex water distribution systems, "Said Don J. Wood, Ph.D., Hon. D.WRE, Professor Emeritus of Civil Engineering at the University of Kentucky. "The software is Being used by water utilities and top engineering firms worldwide. Having esta training and education in mission-critical technology is a major asset in validating our students' expertise to prospective Employers as well as preparing them for rewarding careers. "

Anticipating and controlling transient response is critical to Ensuring the protection, integrity, and effective / efficient operation of water distribution systems. Transient responses can introduce Pressures of sufficient magnitude (upsurge) to burst pipes and damage equipment. The RESULTING repercussions can range from extended service outages to loss of property and life. In Addition, transient responses can produce subatmospheric Pressures (downsurge) That Could force contaminated groundwater into the distribution system at a leaky joint, crack, or break, leading to serious health Consequences. Also subatmospheric Pressures Sustained can cause cavitation and water column separation, RESULTING in severe water hammer effects as the steam cavity collapses.

The state-of-the-art, full-featured  InfoSurge  transient flow analysis solution delivers the highest rate of return in the industry by addressing every facet of pressure arises analysis and Its role in utility infrastructure management and protection. The program Utilizes the powerful Lagrangian Wave Characteristic Method-driven, with proven superior performance in Both numerical accuracy and computational efficiency of solution for transient analysis of large water distribution networks. It provides the engineer-friendly framework needed to Quickly ASSESS the effects of pump station power failures, pump startup, valve closures, rapid demand and pump speed Changes, then a Determines the efficacy of any combination of devices arises protection. Its  SurgeAnimate  module Enables users to create live animations of pipe profiles and see and experience transient model activities in real time, helping them ASSESS the effectiveness and strength of Their systems.  InfoSurge  Also Accurately simulates transient cavitation and water column separation, Evaluates Their intensity, and Their estimates potential effects on the system.

Armed With This information, engineers can more worldwide Accurately predict the development of unacceptable operating conditions, vulnerable areas and Risks Identify, Evaluate and design sound protective Measures, and devise improved operational plans and security upgrades. The simulation software's blazing speed and seamless GIS integration totally transform the task of transient analysis, making it simpler, more straightforward, and even enjoyable.

A comprehensive  Student Design and Analysis Workbook  is included With the  InfoSurge  Student Edition. In Addition to background theory, It provides step-by-step Approaches to water network model construction, transient simulation and analysis, along with a variety of Carefully selected case studies to Reinforce the hands-on nature of learning. These transient network Real-life Situations modeling enable students to familiarize Themselves With day-to-day problem-solving in engineering practice.

"Water utilities and engineering consulting firms around the world rely on Innovyze's best-in-class smart network modeling and design solutions to manage and operate better, safer and more sustainable and resilient wet infrastructure systems," Said Paul F. Boulos, Ph.D. ., BCEEM, Hon.D.WRE, Dist.D.NE, Dist.M.ASCE, NAE, President, COO and Chief Technical Officer of Innovyze. "Innovyze is Committed to Fostering and technical achievement in technological advancement in teaching and research Both THROUGHOUT the engineering community. At a time When universities are faced With tighter budgets, our  Student Edition Software  offers the Institutions These tools Their They need to teach students using state-of-the-art technology, helping to groom them for rewarding professional careers. It Allows students Who are interested in the field of environmental and water resources engineering to train on the sophisticated technology used by leading utilities and progressive engineering consulting companies on a daily basis. This Gives them an unbeatable competitive advantage and Helps them thrive. It Also Gives them the skills They need to meet Demands industry, sustain our water infrastructures, advance our economies, and build a better world. "

Availability 
The special student edition of  InfoSurge  and Its Accompanying  Student Design and Analysis Workbook  are available to download free of charge from the website at Innovyze  http://www.innovyze.com/education/student/ .
About Innovyze Innovyze is a global leading provider of wet infrastructure business analytics software solutions designed to meet the technological needs of water / wastewater utilities, government agencies, and engineering Organizations worldwide. Its clients include the majority of the largest UK, Australasian, East Asian and North American cities, foremost utilities on all five continents, and ENR top-rated design firms. With unparalleled expertise and offices in North America, Europe and Asia Pacific, the Innovyze connected portfolio of best-in-class product lines EMPOWERS Thousands of engineers to competitively plan, manage, design, protect, operate and sustain highly efficient and reliable infrastructure systems, and Provides an enduring platform for customer success. For more information, call Innovyze at +1 626-568-6868, or visit  www.innovyze.com .
Innovyze Contact: Ray Rajan Director of Marketing and Client Service Manager
Rajan.Ray@innovyze.com
+1 626-568-6868

Monday, September 21, 2015

Inflow versus DWF Time Series in #InfoSWMM and #SWMM5

One of the limitations of using Dry Weather Flow (DWF) in SWMM 5 and InfoSWMM is that the same DWF pattern is repeated every 24 hours for either a Weekday or Weekend.  This pattern can be changed by multiplying by the Daily and/or Monthly pattern but the same core hourly pattern stays the same.  There is an alternative, however, and the alternative is to use a time series over a period of days or weeks that matches either your monitored data or a weekly dry weather pattern.
Here is an example of how this is used.  The base DWF pattern is over a 24 hour period (Figure 1).  The two day result is copied from the InfoSWMM report manager and applied as a multiple day pattern in the time series editor (Figure 2).  The Scenario Manager of InfoSWMM allows two runs: (1) DWF Pattern only and (2) DWF Pattern + Time Series for Two Days (Figure 3).  The Output Report Manager of InfoSWMM shows that the Inflow Time Series + DWF is twice the DWF only (Figure 4).  It shows that the the multiple day pattern is the same as the DWF pattern  for two days.
SNAGHTML1653d01f
Figure 1. DWF Pattern for 24 hours at one hour intervals.
SNAGHTML1652e7d3[4]
Figure 2. DWF Pattern Applied or Copied to the Time Series Editor.
SNAGHTML165d77e2
Figure 3. Two Scenarios in InfoSWMM to show DWF Only and DWF + Inflow Time Series
SNAGHTML1651280e
Figure 4. The end result in the InfoSWMM Output Report Manger is twice the DWF due to the Hourly DWF Pattern + The Inflow Time Series at the Node.

Friday, September 18, 2015

Some of today’s sewers were built before bathrooms as we know them existed. It’s time to upgrade. From City Lab cites Wayne Huber

Flushing the Toilet Has Never Been Riskier



Amit Dave / REUTERS

Flushing toilets enable most Americans to make their own waste disappear as if by magic, but most would be hard-pressed to answer this simple question: When you flush, where does it go?
Septic tank owners, about 20 percent of Americans, are most likely to be able to give an accurate answer, because they’re responsible for the maintenance of their own sewage-disposal systems. A flush from one of their toilets sends wastewater to a tank buried on their property, where the waste products separate into solid and liquid layers and partially decompose. The liquid layer flows out of the tank and into a drainfield that disperses it into the soil, wherenaturally occurring microbes remove harmful bacteria, viruses, and nutrients. The solid layer stays behind in the form of sludge that must be pumped out periodically as part of routine maintenance. If the tank is properly designed and maintained, those bacteria, viruses, and nutrients stay out of groundwater and surface water that people may use for drinking water, and they never reach surface water bodies where people swim or boat.
The vast majority of the 80 percent of Americans who don’t use septic tanks are served by municipal water-treatment plants. Waste from their homes is whisked immediately off the premises, never to be seen, smelled, or considered again. Pipes carry waste from these homes to wastewater-treatment plants that, in some ways, work like a septic tank on a very large scale.
Just as in a septic tank, the solid and liquid wastes are separated first in a process known as primary treatment. Next, as in a septic tank’s drainfield, bacteria break down contaminants in a process called secondary treatment. After that, treatment with chlorine kills the remaining bacteria. Then, in some communities, special treatment technologies remove contaminants that are of special concern, such as phosphorus or nitrogen. When the process is complete, the treated waste meets regulatory standards and is released to a nearby water body—that is, if all goes well. If all doesn’t go well—perhaps the treatment plant suffers an outage or there’s more waste than the plant was designed to treat—untreated waste can be released to surface water.


As treatment plants age across the United States and as the country’s population grows, these releases are becoming more problematic, contributing to the serious surface-water problems that crop up frequently in the news. Harmful algal blooms like the one that cost Toledo, Ohio, its drinking waterlast summer, fish kills like the one recently reported off Long Island, and the much-discussed dead zone in the Gulf of Mexico are all fed by phosphorus, nitrogen, and other contaminants found in the untreated sewage that, according to EPA estimates, flows out of America’s treatment plants during the23,000 to 75,000 sanitary-sewer overflows that happen per year.
The causes of these water-quality issues are complex, because the same pollutants can be washed into surface water from agricultural land, industrial sites, and fertilized lawns dotted with pet waste, but the 3 to 10 billion gallons of untreated waste released from our sewage-treatment plants per year cannot help but have an impact.Specifically, they affect the water you swim in and the water you drink.
* * *
A number of studies, including this one from 2010, have found that emergency room visits for gastrointestinal distress increase after a heavy rain. These illnesses are believed to spike after a storm because rainwater washes pathogens into lakes and rivers used for recreation and drinking water. A 2015 study published in Environmental Health Perspectives goes a step further than earlier research by pointing to a common type of municipal sewage-treatment system, combined-sewer systems, as an important factor in these illnesses.
The EPA has called overflows from combined sewer systems “the largest category of our Nation’s wastewater infrastructure that still need to be addressed,” affecting Americans in 32 states, including the District of Columbia. The agency has been working with municipal water systems to address the problem for decades and much progress has been made, but to understand why it’s taking so long, you have to consider history. You also have to consider the massive costs that come with making changes to public works that have served millions of people for more than a century.
Combined sewers collect human waste, industrial waste, and stormwater runoff into a single pipe for treatment and disposal. (In other municipalities, these waste streams are handled separately.) In dry weather, a combined sewer ordinarily carries a relatively low volume of waste, delivering it to publicly owned treatment works, or POTWs for short, that are designed to handle that flow. In plain terms, when a combined sewer system is functioning properly, you can generally trust that when you flush, the contents of the toilet bowl end up where they’re supposed to go.


USEPA
Things change when it rains in communities served by combined sewers. Because a combined system must handle surges of stormwater, rainfall markedly increases the volume of waste that its equipment must handle, making this type of sewage system particularly likely to overflow into surface water. As these diagramsshow, they were designed to do this as a fail-safe for system failures that were intended to be rare but aren’t any longer. If you’re accustomed to a faint smell of sewage in the streets after a rainstorm, these diagrams will show you why.
Unfortunately, the receiving waters for these rain-induced spills are sometimes the same water bodies that are used for drinking water, and sometimes people swim there, too. And sometimes the overflow is so significant that the stormwater-and-sewage mixture backs up into the streets where people walk.
Is it any wonder that rainy weather often triggers a spike in stomach bugs and beach closures?
* * *
Given what’s at stake, why are upgrades to aging systems taking so long? Consider this map of the 772 American communities with combined-sewer systems.
Most combined systems are concentrated in the older cities of the Northeast and the Great Lakes region, but they also exist in other older cities as far-flung as Atlanta, Memphis, and San Francisco. In other words, the systems that pose risks today happen to be the ones—state-of-the-art when they were built, but not today—that are in some of the biggest cities in America, which have acombined population of approximately 40 million people.


If you’re feeling relieved to see that your hometown isn’t marked on the map, remember that fecal-coliform bacteria don’t always stay close to home. Waste spilled into the Ohio River affects everyone down the Ohio and the Mississippi, and it contributes to the ongoing woes of the Gulf of Mexico. Even if you don’t live in the Northeast, along the Ohio, in the Great Lakes region, along the Mississippi, or on the Gulf Coast, bear in mind that 40 percent of the commercial seafood caught in the continental U.S. comes from the Gulf of Mexico. In other words, when Cincinnati’s sewer system overflows into the Ohio, it intrudes into the food chain of a lot of people.
* * *
The EPA calls combined sewers “remnants of the country's early infrastructure.”The first sewers weren’t designed to handle the constant and huge stream of wastes from our toilets, because they were invented when we didn’t have any toilets. Sewers were originally built to solve the problems of cities that were flooded with their own refuse—garbage, animal manure, and human waste left in the open rather than in a privy or latrine—during every rainstorm. To prevent that flooding, the fouled stormwater was shunted out of town and into the nearest handy receptacle, which was often a lake, river, stream, or ocean.
When flush toilets became common in the mid-1800s, they were piped into these existing sewers, introducing much more human waste, as well as a large volume of water that had never been there before. In some ways, this was a design feature, not a bug, because the burst of stormwater flushed out pipes that might have otherwise gotten clogged. This flush of rainwater also diluted the waste before it hit a nearby river.
In time, though, dilution wasn’t enough to keep waterways safe and attractive, and sewage treatment plants were invented to clean up the waste stream before releasing it to water bodies. Newer cities, which were starting from scratch, generally handled stormwater separately from human and industrial wastes from the start, but cities whose sewer systems had always been combined continued to treat both waste streams together.


As the older cities grew larger, their combined-treatment systems struggled to keep up, and growing populations weren’t the only factor. Time itself exacerbated their woes. In Hoboken, for example, some sewer lines date back to the Civil War. Common sense says that pipes that have been buried for a century and a half tend to leak. Over time, they also get clogged with debris or even congealed cooking oil, resulting in narrowed pipes that overflow even more easily.
When narrowed pipes are already overloaded, the added influx of stormwater when it rains becomes just too much water. Now, some cities experience overflows with less than a quarter-inch of rain, with resulting risks to human health. It is common for cities with combined-sewer systems to advise citizens to stay out of the water for days after any rainfall. And now the Environmental Health Perspectives study suggests that after a very heavy rain, those overflows may be affecting their communities’ drinking water, too.What is being done? Combined sewers have been an EPA priority for many years and, after decades of significant effort, the numbers are starting to move in the right direction, but this is not a problem that can be turned around quickly or cheaply. New York City’s combined sewers are still the single largest source of pathogens to the New York Harbor system, according to the New York Department of Environmental Protection. A single 2014 storm triggered a release into Lake Erie from Detroit, Michigan, of more than 44 million gallons of raw sewage from sanitary sewers and almost 3 billion gallons from combined sewers, and such releases from Detroit and the other cities with sewer outfalls on Lake Erie contribute to the fact that it blooms with algae every summer. Last summer, one of those algal blooms cost Toledo its drinking water for two days, and this year’s harmful algal blooms were projected to be even worse than last year’s.
As with any engineering project, the benefits of reducing overflows to zero—an effort estimated by the EPA in 2004 to cost $88.8 billion—must be weighed against its cost.
“We mustn’t forget the hugely successful effort in the 1970s and 1980s to provide secondary treatment at virtually every sewage-treatment plant in the country,” said Wayne Huber, a professor emeritus of Civil and Construction Engineering at Oregon State University. As an example, he describes what happened in Portland, Oregon, where a system of tunnels now contains 90 percent of the city’s stormwater surges. “Portland spent about $500 million on its deep tunnels and pumping system,” Huber said. “This has reduced the number of releases into the Willamette River from maybe 50 to 100 per year to five to ten per year.”
Huber also highlights Philadelphia’s “green technology” strategy to reduce overflows to the Delaware and Schuylkill rivers. Since avoiding massive construction is often synonymous with avoiding massive expenditures, Philadelphia’s use of approaches like rain gardens and green roofs to divert stormwater from the waste stream going to its treatment plants could serve as a model for other municipalities struggling with the same problems.
Huber cautions against relying on a single approach, saying that “green technology seeks to avoid large investments in infrastructure by keeping stormwater out of the combined sewer in the first place, but in heavily urbanized areas that is seldom an option, hence the massive storage projects that we see in cities like Chicago.”
On the individual level, people concerned about wastewater can give some thought to the fertilizer, pesticides, trash, and animal waste that wash off of lawns and into sewer systems, lakes, rivers, and oceans. As citizens, they can also advocate at local, state, and federal levels for improvements. People can reduce stormwater flow by planting their own rain gardens and green roofs—and by being judicious about the way they water our lawns and wash their cars. Sometimes, doing the right thing is as simple as being careful about what goes into storm drains and toilets.
After hearing about the plume of sewage, littered with used condoms and tampons, that emanated from Philadelphia’s sewer outfalls prior to the city’s upgrade, it’s hard to look at flushing the toilet the same way. If Americans want to be able to drink tap water or swim at beaches after it rains, they have to keep trying to improve wastewater infrastructure, even if the size of the problem boggles the mind.
This post originally appeared on The Atlantic.

Introduction to Scenarios in ICM

### Introduction to Scenarios in ICM In network modeling software like InfoWorks ICM, scenarios are a powerful feature that allows users to ...