Showing posts with label H2OMAP SWMM. Show all posts
Showing posts with label H2OMAP SWMM. Show all posts

Sunday, December 22, 2013

H2OMap SWMM Interface to SWMMLive

H2OMap SWMM has a new interface to SWMMLive program http://www.innovyze.com/products/swmmlive/ by @Innovyze

The AddOn to H2OMap SWMM allows the user to export their current  H2oMap SWMM model to the SWMM Engine of SWMMLive.  

1.       You call the AddOn using the Tools AddOn Extension Manager command
2.       The engine data (in SWMM 5 format) is exported to SWMMLive using the Export Model to SWMMLive
3.       You can graph the result of the SWMMLive model using the Diagnose SWMMLive Model Tab 


Tuesday, December 17, 2013

Innovyze Releases SWMMLive: Real-Time Stormwater, Wastewater and Watershed Modeling

Innovyze Releases SWMMLive: Real-Time Stormwater, Wastewater and Watershed Modeling

Revolutionary New Product Equips Wastewater Utilities with Unprecedented Capabilities for Decision-Making and Real-Time Control Optimization

Broomfield, Colorado, USA, December 17, 2013

Redrawing the boundaries of collection system modeling, Innovyze, a leading global innovator of business analytics software and technologies for smart wet infrastructure, today announced the worldwide release of SWMMLive for real-time operational forecasting and management of urban drainage systems. The pioneering release provides wastewater utilities timely, accurate and reliable forecasts of what will happen within a catchment, based on past and current observations of a multitude of parameters along with future rainfall predictions. It also helps them identify flood-vulnerable assets and formulate sound remediation/mitigation strategies.

The product combines the comprehensive urban drainage modeling capabilities of InfoSWMM (and H2OMAP SWMM) with sophisticated real-time operational forecasting, early warning, and emergency management. This debut reflects Innovyze’s vanguard position in the wastewater industry and its ongoing commitment to delivering pioneering smart water solutions that enhance the safety, reliability and sustainability of the world’s hydraulic infrastructure.

Advances in computer simulation and hardware have made real-time operation of stormwater, wastewater and combined systems a reality.SWMMLive allows both large and small utilities to manage their collection systems more efficiently and effectively than ever before. This powerful risk assessment and real-time decision making tool enables managers and operators to consider the influence of a full range of catchment factors in three key areas: management of flooding and reduction of unregulated discharges; optimization of storage, green alternatives and existing infrastructure, leading to savings on capital works; and optimization of pumps to lower energy costs and reduce CO2 emissions.

SWMMLive can directly import any InfoSWMM or H2OMAP SWMM project and is designed to work automatically. Once a system is configured, real-time data is continually and automatically harvested and quality checked. This data can be defined by a number of parameters, including observed and forecasted radar rainfall, online water quality measurements, and ancillary structure and pump operation time series. Simulations are carried out automatically at a user-defined frequency using the full hydrodynamic and functional capabilities of InfoSWMM (and H2OMAP SWMM), including water quality assessment, pollution prediction, urban flooding, green LID and BMP alternatives, and real-time control. Simulation frequency can change in response to user-defined conditions. For example, increased rainfall intensity can trigger a reduction in the interval between simulations.

Warnings or alerts triggered during the forecast period are instantly displayed via the rich SWMMLive user interface, allowing system operators to see at a glance which areas need attention and what actionable options might be taken. Comparison alerts can be used to highlight differences between observed and modeled results, enabling users to refine their models — creating unprecedented confidence in simulation results.

SWMMLive also allows operators to perform additional simulations that explore alternative real time control scenarios — such as the impact of switching on a pump earlier than planned — and quickly seeing the effect of these changes on the system. The wide range of capabilities in SWMMLive allow it to be used as a key tool in the decision making process, enabling operators to take action to avoid system issues, release timely alerts, and quickly deploy response teams if necessary.
“Real-time urban drainage modeling is an invaluable tool for wastewater utility planning, engineering and water quality departments,” said Paul F. Boulos, Ph.D., BCEEM, Hon.D.WRE, Dist.D.NE, F.ASCE, President, COO and Chief Operating Officer of Innovyze. “However, translating these benefits to real-time operations has proven difficult. With SWMMLive, Innovyze has changed the paradigm for how and where urban drainage models can be applied. This milestone solution will help wastewater utilities worldwide harness the power of real-time data, scenario planning, and predictive modeling to transform the operation and management of their collection systems and anticipate and mitigate the effects of extreme weather-related events. It is the ultimate decision support system for operating and sustaining safe, reliable and efficient infrastructures while effectively protecting public health and our waterways.”

Sunday, December 1, 2013

Runoff from One Watershed for a 100 Year Simulation with SWMM 5 Statistics for the Subcatchment Impervious and Pervious Depth

Introduction:  This set of blogs uses the 1000 year rainfall/runoff/hydraulics model that you can download at http://swmm2000.com/forum/topics/1000-year-simulation-with-rainfall-in-swmm-5 to show the inner workings of SWMM 5 and by extension InfoSWMM and H2oMap SWMM using a QA/QC version of SWMM 5 with extended graphics.   I always hope that seeing the inner workings of a SWMM 5 feature helps to understand the code, sensitivity and importance of a parameter.   It also helps show sometimes when a parameter is not important.  

Discussion:  In this blog we look at the Subcatchment Runoff Depth for the three types of Subcatchment Surfaces in SWMM 5:
1.       Impervious with depression storage
2.      Impervious without depression storage
3.      Pervious area with depression storage

As you can see in the graphs of depth (Figure 1) the pervious depth is often zero as the infiltration is greater than the continuous rainfall.  Of course this depends on the rainfall intensity, infiltration type and infiltration parameters.  If you perform a Statistical Analysis on the pervious depth at a saved time step of 1 hour you will find 2721 events over a threshold of 0.01 feet. 


Figure 1.   Runoff from One Watershed for a 100 Year Simulation with SWMM 5 Statistics for the Subcatchment Impervious and Pervious Depth



Friday, November 29, 2013

Runoff from One Watershed for a 100 Year Simulation with SWMM 5 Statistics for Peak, Mean and Total Runoff

Introduction:  This set of blogs uses the 1000 year rainfall/runoff/hydraulics model that you can download at http://swmm2000.com/forum/topics/1000-year-simulation-with-rainfall-in-swmm-5 to show the inner workings of SWMM 5 and by extension InfoSWMM and H2oMap SWMM using a QA/QC version of SWMM 5 with extended graphics.   I always hope that seeing the inner workings of a SWMM 5 feature helps to understand the code, sensitivity and importance of a parameter.   It also helps show sometimes when a parameter is not important.  

Discussion:  In this blog we look at the Runoff total over the 100 year period, graph the runoff (Figure 1) and show the Mean, Total and Peak Runoff using the Statistics Command in SWMM 5.   The Frequency plots shown in Figure 1 are made using event separation time of 6 hours.  The number of Runoff Events over the 100 year period is 11,144 events.   The details of the simulation are shown in Figure 2.

Figure 1.   Runoff from One Watershed for a 100 Year Simulation with SWMM 5 Statistics for Peak, Mean and Total Runoff

Figure 2.  Details of the Simulation Watershed
[TITLE]

[OPTIONS]
FLOW_UNITS           CFS
INFILTRATION         GREEN_AMPT
FLOW_ROUTING         DYNWAVE
START_DATE           01/01/2500
START_TIME           00:00:00
REPORT_START_DATE    01/01/2500
REPORT_START_TIME    00:00:00
END_DATE             12/31/2599
END_TIME             23:00:00
SWEEP_START          01/01
SWEEP_END            01/30
DRY_DAYS             0
REPORT_STEP          01:00:00
WET_STEP             00:15:00
DRY_STEP             00:30:00
ROUTING_STEP         0:01:00
ALLOW_PONDING        NO
INERTIAL_DAMPING     NONE
VARIABLE_STEP        0.75
LENGTHENING_STEP     1
MIN_SURFAREA         0
NORMAL_FLOW_LIMITED  BOTH
SKIP_STEADY_STATE    NO
FORCE_MAIN_EQUATION  H-W
LINK_OFFSETS         DEPTH
MIN_SLOPE            0
; Added Parameters for QA/QC
MAX_PROCESSORS       NO
BYPASS               YES
ThetaStorage         NO
MAX_ITERATIONS       8
MIN_ITERATIONS       2
TOLERANCE            0.001000
RELAXATION           0.50
AREAWEIGHT           1.00
HYDRAULICWEIGHT      1.00
DWF_GLOBAL           1.0
RDII_GLOBAL          1.0
DEPTH_UNITS         
SaveAllData          NO

[FILES]
SAVE RAINFALL "C:\Users\Robert E Dickinson\Desktop\Desktop_July2012\RainFall.rff"

[EVAPORATION]
;;Type       Parameters
;;---------- ----------
MONTHLY      .1     0.1    .1     0.15   0.2    0.3    0.191  0.3    0.2    0.1    0.05   0.05 
RECOVERY     soil
DRY_ONLY     YES

[RAINGAGES]
;;               Rain      Time   Snow   Data     
;;Name           Type      Intrvl Catch  Source   
;;-------------- --------- ------ ------ ----------
RainGage         VOLUME    1:00   1.0    FILE       "D:\100_years_rainfall.dat" user       IN  

[SUBCATCHMENTS]
;;                                                 Total    Pcnt.             Pcnt.    Curb     Snow   
;;Name           Raingage         Outlet           Area     Imperv   Width    Slope    Length   Pack   
;;-------------- ---------------- ---------------- -------- -------- -------- -------- -------- --------
MySubCatchment           RainGage         Storage          10       10       100      0.5      0                       

[SUBAREAS]
;;Subcatchment   N-Imperv   N-Perv     S-Imperv   S-Perv     PctZero    RouteTo    PctRouted
;;-------------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
MySubCatchment           0.02       0.05       0.05       0.1        25         OUTLET   

[INFILTRATION]
;;Subcatchment   Suction    HydCon     IMDmax   
;;-------------- ---------- ---------- ----------
MySubCatchment           4          1          0.25     

[OUTFALLS]
;;               Invert     Outfall    Stage/Table      Tide
;;Name           Elev.      Type       Time Series      Gate
;;-------------- ---------- ---------- ---------------- ----
Outfall          0          FREE                        NO

[STORAGE]
;;               Invert   Max.     Init.    Storage    Curve                      Ponded   Evap.  
;;Name           Elev.    Depth    Depth    Curve      Params                     Area     Frac.    Infiltration Parameters
;;-------------- -------- -------- -------- ---------- -------- -------- -------- -------- -------- -----------------------
Storage          1        9        0        FUNCTIONAL 10       0        0        0        0       

[CONDUITS]
;;               Inlet            Outlet                      Manning    Inlet      Outlet     Init.      Max.     
;;Name           Node             Node             Length     N          Offset     Offset     Flow       Flow     
;;-------------- ---------------- ---------------- ---------- ---------- ---------- ---------- ---------- ----------
VENANT           Storage          Outfall          500        0.013      0          0          0          0        

[XSECTIONS]
;;Link           Shape        Geom1            Geom2      Geom3      Geom4      Barrels    Culvert Code  Transition Multipler
;;-------------- ------------ ---------------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
VENANT           CIRCULAR     3                0          0          0          1          0          0          0        

[LOSSES]
;;Link           Inlet      Outlet     Average    Flap Gate
;;-------------- ---------- ---------- ---------- ----------

[POLLUTANTS]
;;               Mass   Rain       GW         I&I        Decay      Snow  Co-Pollut.       Co-Pollut. DWF      
;;Name           Units  Concen.    Concen.    Concen.    Coeff.     Only  Name             Fraction   Concen.  
;;-------------- ------ ---------- ---------- ---------- ---------- ----- ---------------- ---------- ----------
tn               MG/L   1          0.0        0.0        0.0        NO    *                0.0        0.0      

[LOADINGS]
;;Subcatchment   Pollutant        Loading  
;;-------------- ---------------- ----------

[INFLOWS]
;;                                                 Param    Units    Scale    Baseline Baseline
;;Node           Parameter        Time Series      Type     Factor   Factor   Value    Pattern
;;-------------- ---------------- ---------------- -------- -------- -------- -------- --------
Storage          FLOW             ""               FLOW     1.0      1.0      1      

[DWF]
;;                                Average    Time     
;;Node           Parameter        Value      Patterns 
;;-------------- ---------------- ---------- ----------
Storage          FLOW             2          "Hourly"

[HYDROGRAPHS]
;;               Rain Gage/     
;;Name           Month            Response R        T        K        IA_max   IA_rec   IA_ini 
;;-------------- ---------------- -------- -------- -------- -------- -------- -------- --------
MANY             RainGage       
MANY             All              Short    .1       1        1        1        .01      0      
MANY             All              Medium   .05      3        3        1        .01      0      
MANY             All              Long     .01      5        10       1        .01      0      


[RDII]
;;Node           Unit Hydrograph  Sewer Area
;;-------------- ---------------- ----------
Storage          MANY             1        

[PATTERNS]
;;Name           Type       Multipliers
;;-------------- ---------- -----------
soil             MONTHLY    .01   .10   1     2     1     .10 
soil                        .01   .10   1     2     1     .1  

Hourly           HOURLY     0.191 0.236 0.251 0.302 0.400 0.463
Hourly                      0.703 1.000 0.876 0.670 0.491 0.456
Hourly                      0.400 0.358 0.274 0.290 0.373 0.385
Hourly                      0.468 0.596 0.640 0.543 0.403 0.364

[REPORT]
INPUT      YES
CONTROLS   NO
SUBCATCHMENTS ALL
NODES ALL
LINKS ALL

[TAGS]

[MAP]
DIMENSIONS 747573.697 247745.801 753800.907 251809.529
Units      Feet

[COORDINATES]
;;Node           X-Coord            Y-Coord          
;;-------------- ------------------ ------------------
Outfall          747879.187         247930.516       
Storage          750522.255         249213.382       

[VERTICES]
;;Link           X-Coord            Y-Coord          
;;-------------- ------------------ ------------------

[Polygons]
;;Subcatchment   X-Coord            Y-Coord          
;;-------------- ------------------ ------------------
MySubCatchment           747856.752         247967.907       
MySubCatchment           747726.887         248390.794       
MySubCatchment           747597.022         248813.681       
MySubCatchment           747221.312         249101.864       
MySubCatchment           747337.291         249659.456       
MySubCatchment           747484.496         250917.382       
MySubCatchment           749812.998         251702.471       
MySubCatchment           753039.238         251624.814       
MySubCatchment           753965.941         250721.110       
MySubCatchment           753517.852         247990.342       

[SYMBOLS]
;;Gage           X-Coord            Y-Coord          
;;-------------- ------------------ ------------------
RainGage         750276.915         250966.450       

Monday, November 11, 2013

How Inlets and Overland Flow Junctions work in InfoSWMM

The overland flow junction does have an invert and rim elevation, it is usually part of a road system and you can drain Subcatchment flow to the overland flow junction.   If an Inlet node is flooded the excess water can flow out of the inlet to the street through the overland flow junction.  There is a virtual link between the Inlet Junction and the Overland Flow Junction.




Sunday, November 10, 2013

The Effect of the LID Percent Impervious Treated in SWMM5

The Effect of the LID Percent Impervious Treated in SWMM5

If you use the option percent impervious treated for LID's on a Subcatchment then a percent of the impervious flow is routed to the LID.  For example, 50 percent of roof runoff to a LID Swale.  It has the impact of reducing the peak and total runoff fro the whole Subcatchment but increases the LID only flow.  From the SWMM 5 help file  "The percent of the impervious portion of the subcatchment's non-LID area whose runoff is treated by the LID practice. (E.g., if rain barrels are used to capture roof runoff and roofs represent 60% of the impervious area, then the impervious area treated is 60%). If the LID unit treats only direct rainfall, such as with a green roof, then this value should be 0. If the LID takes up the entire subcatchment then this field is ignored"
Figure 1.   LID's get 50 percent of the impervious flow which reduce the overall flow from the Subcatchments.

Figure 2.  No Impervious Flow to the LID. 




Saturday, October 12, 2013

How to Use the Compare Report Command in H2OMap SWMM and InfoSWMM

How to Use the Compare Report Command in H2OMap SWMM and InfoSWMM
1.       Run all of your scenario using Batch Simulation and Select Conduit Summary from the Report Manager
2.      Select all of your scenarios using  the Compare Report Icon
3.      You will have a lot of columns so Using the Format Report Icon select a few report variables to view
4.      You will now have a table with the Peak flow or Peak Depth for all Scenarios
5.      h/t MJ for the suggestion

How to Use the Compare Report Command in H2OMap SWMM and InfoSWMM



Monday, October 7, 2013

How InfoSWMM uses Calibration or monitored data during a Simulation

How InfoSWMM uses Calibration or monitored data during a Simulation

The calibration data is used in the Calibrator Addon (which uses a Genetic Algorithm  to calibrate RDII, Subcatchment, Infiltration, Groundwater, Pipe, Node or Pump input data to calibration data) by running a model many times to optimize the fit (Figure A).  The fit between measured and simulated results can be viewed in the Output Report Manager with comparison statistics on the graph (Figure B).  The monitored data is linked to your model using the Calibration Tool (Figures C, D and E) and the GA Calibration process is controlled by many best fit options (Figure F). 


Figure A.  GA Calibration in InfoSWMM, Each of the Calibration parameters in your model have Min and Max Constraint levels

Figure B.  Calibration data and Flows or Node depth are compared directly in the Output Manager of InfoSWMM.

Figure C.  How to Enter the Calibration Data in the Tools Menu.



Figure D.  Calibration data can be node depth, node head, inflow, flooding, quality, link flow, link velocity, link HGL, Runoff, Snow Depth and Groundwater in ASCII files.

Figure E.    The Calibration data can be selected and Editing in the Tools Dialog.



Figure F.  The options for running the Calibrator Addon to InfoSWMM




Wednesday, October 2, 2013

How the Steady State option works in H2OMap SWMM and InfoSWMM

How the Steady State option works in H2OMap SWMM:
1.       Use Keep, a Time Step lengthening of 10 seconds, a time step of 60 seconds and iterations as shown in Bullet 1
2.      Use the Steady State Option of Skip Steady State Period when the total inflow between time step is less than 0.05 cfs or the equivalent in lps or cms units
3.      A time step of 10 seconds will be used during Wet Weather, a time step of 60 seconds will be used during the transition between dry and wet weather or Bullet 3
4.      You should be able to speed up your by a factor of 10 to 2o to 1 depending on the frequency of rainfall  or Bullet 4
5.     This was 10 year simulation using the dynamic wave option of SWMM 5


This was 10 year simulation using the dynamic wave option of SWMM 5





The Effect of the Wrong Raingage Interval in H2OMap SWMM and InfoSWMM

Here is an example showing the Runoff, Rainfall and Infiltration losses when you use the wrong interval based on the hyetograph time series.
1.       Figure 1 shows the Rainfall, Runoff and Infiltration for a time interval of 5 minutes which matches the hyetograph interval, the raingage has units of mm and is the total volume over the interval
a.      The volume of rainfall is 20.03 mm as it the total rainfall over the interval
b.      The rainfall, runoff and infiltration graphs are smooth
2.      Figure 2 shows the Rainfall, Runoff and Infiltration for a time interval of 1 minutes which does NOT match the hyetograph interval, the raingage has units of mm and is the total volume over the interval
a.      The volume of rainfall is 20.03 mm as it the total rainfall over the interval
b.      The rainfall, runoff and infiltration graphs are not smooth as there is a gap of no rainfall between minute 1 and 5 for all of the hyetograph time intervals
c.       The peak rainfall is higher as the rainfall is over 1 minute instead of 5 minutes
d.      The peak runoff and infiltration rates are also higher but this difference depends on the roughness, depression storage and infiltration parameters of the catchment
e.      The slower the runoff the more Figure 1 and Figure 2 runoff will look alike even though the rainfall is the spiky versus smooth (Figure 3).



Figure 1.  The Rainfall, Runoff and Infiltration loss for a gage interval of 5 minutes which matches the Time Series Interval

Figure 2.  The Rainfall, Runoff and Infiltration loss for a gage interval of 1 minutes which does not  match the Time Series Interval


Figure 3.  The Rainfall, Runoff and Infiltration loss for a gage interval of 1 minutes which does not  match the Time Series Interval, the Subcatchments Width is smaller than was used in Figure 1 and Figure 2




Sunday, September 22, 2013

Cómo importar Enlace Shapefiles en InfoSWMM

Cómo importar Enlace Shapefiles en InfoSWMM

Cómo importar Enlace Shapefiles en InfoSWMM

Este blog se describe cómo utilizar la herramienta de puerta de enlace de los SIG en InfoSWMM importar shapefiles y hacer tablas DB InfoSWMM y Arc Mapa Capas de la Shapefiles. La importación de archivos de forma en cualquiera InfoSWMM o H2oMap SWMM es muy flexible y se utiliza el cambio Mando / GIS Gateway. Si usted está empezando desde un nuevo Arco Mapa entonces lo mejor es añadir primero los shapefiles de Arc Map, inicializar el Mapa para el Sistema de Coordenadas del Shapefiles e importar los archivos de forma utilizando GIS Portal para hacer una capa Junction InfoSWMM. Los pasos para utilizar el GIS Portal para nodos

Paso 1.    Agregar las tuberías o Link Shapefiles e inicializar el Arco del mapa al sistema de coordenadas del Shapfile usando cualquiera de las opciones de geodatabase personal o de archivos.
Paso 2.    Utilice el comando Portal GIS y configurar el archivo de forma de cargar en las tablas conducto de InfoSWMM con el campo adecuado Mapeo GIS.
Paso 3.    será necesario asignar los campos de datos shapefile InfoSWMM los campos de datos de conducto.
Paso 4.    Cargue el archivo de forma mediante el comando de carga. Las Tablas InfoSWMM DB se actualizará.
Paso 5.    La capa de Conduit de InfoSWMM tiene las tablas cargadas, se puede ver los datos utilizando el comando Abrir tabla de atributos.
Paso 6.    La Tabla DB InfoSWMM de conductos tiene el vínculo de datos importados.


Paso 1.    Agregar las tuberías o Link Shapefiles e inicializar el Arco del mapa al sistema de coordenadas del Shapfile usando cualquiera de las opciones de geodatabase personal o de archivos.




Paso 2.    Utilice el comando Portal GIS y configurar el archivo de forma de cargar en las tablas conducto de InfoSWMM con el campo adecuado Mapeo GIS.




Paso 3.    será necesario asignar los campos de datos shapefile InfoSWMM los campos de datos de conducto.


Paso 4.    Cargue el archivo de forma mediante el comando de carga. Las Tablas InfoSWMM DB se actualizará.

. Paso 5    La capa de Conduit de InfoSWMM tiene las tablas cargadas, se puede ver los datos utilizando el comando Abrir tabla de atributos.

Paso 6.    La Tabla DB InfoSWMM de conductos tiene el vínculo de datos importados.

AI Rivers of Wisdom about ICM SWMM

Here's the text "Rivers of Wisdom" formatted with one sentence per line: [Verse 1] 🌊 Beneath the ancient oak, where shadows p...