Showing posts with label Groundwater. Show all posts
Showing posts with label Groundwater. Show all posts

Wednesday, July 4, 2012

Steps in Using RDII Analyst for InfoSWMM, ICM and InfoSewer

Subject:  Steps in Using RDII Analyst for InfoSWMM, ICM and InfoSewer


Steps in Using RDII Analyst for InfoSWMM, ICM and InfoSewer

by dickinsonre
Subject:  Steps in Using RDII Analyst for InfoSWMM, ICM and InfoSewer 
Step 1: Create a Base UH  in the Operation Tab of the Attribute Browser using RDII Analyst (Figure 1)
Step 2: Assign a UH to at Least 1 Node Using the Inflow Icon  
Step 3: Open Up RDII Analyst and Click on New to Create a RDII Session    
Step 4: Define the Flow and Rainfall File     
Step 5: Review the Imported Flow Time Series Step 6: Review the Imported Rainfall  Time Series          
Step 7: Units and RDII Analyst Dates are Controlled by the Simulation Manager   
Step 8: Extract DWF from the Flow Time Series    
Step 9: Assign a UH to at Least 1 Node Using the Inflow Icon  
Step 10: View the DWF Pattern         
Step 11: Create the RDII Time Series          
Step 12: View the RDII Time Series   
Step 13: Run Once Feature to See how Good the Current RTK Parameters are in matching the monitored flow
Step 14: You can use Graph Control to show the mean of the Observed and Predicted RDII on one Graph.        
Step 15: Calibrate the RTK Parameters        
Step 16: Run the GA 
Step 17: Assign the Intermediate Answers  to the UH     
Step 18: View the Calibration Graph  
Step 19: Event Identification   
Step 20: Assign the Found DWF Pattern     
Step 21: Node DWF and RDII Inflow
Step 22: 3 RDII UH's Used in the Simulation of the RDII Flows  

 Figure 1.  RDII Analyst is part of the InfoSWMM or H2OMAP SWMM Suite but the derived RTK parameters can be used in either InfoSWMM, SWMM5, ICM or InfoSewer

Monday, May 28, 2012

Historical SWMM 5 and SWMM 4 Engines and Examples

Subject:  Historical SWMM 5 and SWMM 4 Engines and Examples

The web site has http://swmm5legacycode.ning.com/  historical SWMM 5 installs, SWMM 5 input file examples and SWMM 4 input files and engines.   The SWMM 4 engines go back to SWMM 3.5 engines from the 1980’s.


Saturday, May 26, 2012

How is the St Venant Equation Solved for in the Dynamic Wave Solution of SWMM 5?

Subject:   How is the St Venant Equation Solved for in the Dynamic Wave Solution of SWMM 5?

How is the St Venant Equation Solved for in the Dynamic Wave Solution of SWMM 5?

by dickinsonre
Subject:   How is the St Venant Equation Solved for in the Dynamic Wave Solution of SWMM 5?

An explanation of the four St. Venant Terms in SWMM 5 and how they change for Gravity Mains and Force Mains. The HGL is the water surface elevation in the upstream and downstream nodes of the link. The HGL for a full link goes from the pipe crown elevation up to the rim elevation of the node + the surcharge depth of the node.  The four terms are:

dq2 = Time Step * Awtd * (Head Downstream – Head Upstream) / Link Length or
dq2 = Time Step * Awtd * (HGL) / Link Length
Qnew = (Qold – dq2 + dq3 + dq4) / ( 1 + dq1)
when the force main is full dq3 and dq4 are zero and
Qnew = (Qold – dq2) / ( 1 + dq1)
The dq4 term in dynamic.c uses the area upstream (a1) and area downstream (a2), the midpoint velocity, the sigma factor (a function of the link Froude number), the link length and the time step or
dq4 = Time Step * Velocity * Velocity * (a2 – a1) / Link Length * Sigma
the dq3 term in dynamic.c uses the current midpoint area (a function of the midpoint depth), the sigma factor and the midpoint velocity
dq3 = 2 * Velocity * ( Amid(current iteration) – Amid (last time step) * Sigma
dq1 = Time Step * RoughFactor / Rwtd^1.333 * |Velocity|
The weighted area (Awtd) is used in the dq2 term of the St. Venant equation:
dq2 = Time Step * Awtd * (Head Downstream – Head Upstream) / Link Length

The four terms change at each iteration and time step to determine the new flow (Figure 1) based on the two equations:

Denom = 1 + dq1 + dq5
Q = [Qold – dq2 + dq3 + dq4] / Denom

If you look at a table of the values you will see that the terms add up to zero when the flow is constant and to delta Q or the change in Q when the flow is NOT constant (Figure 2).


Figure 1.  The four terms define the new flow at each iteration in the dynamic wave solution of SWMM5


Figure 2.   The magnitude of the four terms determine the flow at the new iteration and ultimately the new Time Step.  If the flow is constant then the value of the term is constant.

Saturday, May 12, 2012

Example Groundwater Model in SWMM 5

Subject:   Example Groundwater Model in SWMM 5

Example Groundwater Model in SWMM 5

by dickinsonre
Subject:   Example Groundwater Model in SWMM 5
 The attached model shows three ways in which the groundwater model of the SWMM 5 subcatchments interact with the node depths of the hydraulic network.  The hydraulic network interaction can be either: 
1.       At a fixed water surface elevation,
2.       At a time varying water surface elevation based on the inflow and geometry of the node and
3.       At a threshold node water surface elevation. 


Saturday, April 14, 2012

The Pump summary table of SWMM5.0.022 and the Percent Time off Columns

Subject:  The Pump summary table of SWMM5.0.022 and the Percent Time off Columns

The Pump summary table of SWMM5.0.022 and the Percent Time off Columns

by dickinsonre
Subject:  The Pump summary table of SWMM5.0.022 and the Percent Time off Columns
The pump summary table at the end of the SWMM 5 report file has two columns for the time off the pump curve BUT the two columns are only informative if the pump is a type 4pump.  If the pump type is 1, 2 or 3 then the low column is always 0 and when the volume, depth or head is either below the lowest point in the point curve or above the highest point in the pump curve the pump summary table lists the time off either low or high in the High column.
xMin is  the 1st point in the pump curve for either volume, depth, head or depth, respectively for pump1, pump2, pump3 and pump4 type pumps
xMax is the last point in the pump curve for either volume, depth, head or depth, respectively for pump1, pump2, pump3 and pump4 type pumps


Saturday, December 31, 2011

How to use SWMM 5 DOS to make an Output Table in the RPT file

Subject:   How to use SWMM 5 DOS to make an Output Table in the RPT file

You can make tables of the node,  link  and  Subcatchment output data in SWMM 5 if you use the DOS SWMM 5 program but not the Windows DLL.   Step 1 is to create the DOS batch file, Step 2 is to select the nodes, links and subcatchments, Step 3 is to run the batch file and Step 4 is to view the RPT tables or extract the data to Excel.  You can do this directly in the InfoSWMM and H2OMAP SWMM graphical user interfaces by using Run Manager, Step 5 to select the nodes, links and subcatchments and Step 6 to view the tables in the browser.

Step 1.   Make a Batch File to call the DOS SWMM 5

swmm5.exe Example1.inp  D:\swmm5.0.022\bob.rpt
pause

Step 2.  Add the nodes,  links and  subcatchments tables you want to generate in the RPT file

[REPORT]
CONTROLS         NO
LINKS                 ALL
NODES               ALL
SUBCATCHMENTS ALL

Step 3.  Run the Batch file

Step 4.  Extract the Tables from the RPT File of SWMM 5


  <<< Node 17 >>>
  ---------------------------------------------------------------------------------
                           Inflow  Flooding     Depth      Head       TSS      Lead
  Date        Time            CFS       CFS      feet      feet      MG/L      UG/L
  ---------------------------------------------------------------------------------
  JAN-01-1998 01:00:00      0.000     0.000     0.000   980.000     0.000     0.000
  JAN-01-1998 02:00:00      5.910     0.000     0.608   980.608    26.065     5.213
  JAN-01-1998 03:00:00     11.935     0.000     0.887   980.887    22.826     4.565
  JAN-01-1998 04:00:00     18.291     0.000     1.143   981.143    21.176     4.235
  JAN-01-1998 05:00:00     12.640     0.000     0.916   980.916    22.426     4.485
  JAN-01-1998 06:00:00      3.925     0.000     0.493   980.493    27.578     5.516
  JAN-01-1998 07:00:00      0.388     0.000     0.161   980.161    38.134     7.627
  JAN-01-1998 08:00:00      0.067     0.000     0.071   980.071    26.937     5.387
  JAN-01-1998 09:00:00      0.029     0.000     0.048   980.048     1.878     0.376

Step 5.  InfoSWMM and H2OMAP SWMM dialog for selecting nodes, links and subcatchments for generating a detailed RPT file table.


Step 6.  Sample InfoSWMM and H2OMAP SWMM RPT Tables if Report Options is used.



InfoSWMM and H2OMAP SWMM are different graphical  user interfaces with similar  tools to the current  version of SWMM 5.  They both use a C++ engine built around the C code engine of SWMM 5.  Most of these blogs apply to SWMM 5, InfoSWMM and H2OMAP SWMM.


Thursday, November 24, 2011

Comparison of the H2OMAP SWMM Hazen Williams Force Main Solution to a Steady State HW Solution

Note:  Comparison of the H2OMAP SWMM Hazen Williams Force Main Solution to a Steady State HW Solution

Comparison of the H2OMAP SWMM5 Hazen Williams Force Main Solution to a HW Solution

by dickinsonre
Note:  Comparison of the H2OMAP SWMM Hazen Williams Force Main Solution to a HW Solution 
In this example, we compare the force main head loss in four links in H20Map SWMM to the head loss in a steady state HazenWilliams solution for the same length pipe, diameter and flow (Figure 1).  The H2OMap SWMM model has a large constant dry weather inflow at the wet wells which floods the wet well and causes a constant pump flow to the force main (Figure 2).  TheHW calculator is located here http://www.engineeringtoolbox.com/william-hazens-equation-d_645.html and a comparison forHW head loss in PSI for 5000 feet long, 3 inch diameter pipes with HW Coefficients of 130, 120, 110 and 100, respectively, is shown in Table 1.   The SWMM 5 equation loss (PSI Diff) and the PSI loss from the HW calculator are very close for all four links.  
Table 1.  Steady State comparison between HW Calculator and H2OMAP SWMM/SWMM 5 Force Main calculations. 
HW
SWMM5
SWMM5
SWMM5 Loss
Loss 
Coefficient
Psi UP
PSI Dn
PSI Diff
PSI HW Calculator
130
84.563
44.88
39.683
39.82
120
88.772
43.765
45.007
45.16
110
91.798
41.426
50.372
50.54
100
95.354
38.727
56.627
56.82

 Figure 1.   H2OMAP SWMM Wet Well, Pump, Force Main and Gravity Main Network 
Figure 2.  Constant Pump Flows
 


Saturday, November 19, 2011

How to Search These Blogs for Information

Note:  How to Search These Blogs for Information

How to Search These Blogs for Information about SWMM5, InfoSWMM or InfoSewer

by dickinsonre
Note:  How to Search These Blogs for Information 
In each of the blogs search  for a term or a set of terms using the search button.   For example, here is http://swmm5.blogspot.com with a search for venant 
 An equivalent Search in http://www.swmm2000.com
 
 An equivalent Search in http://swmm5.wordpress.com/
 
dickinsonre | August 4, 2013 at 7:28 am | Tags: BloggerH2oMAP SWMMIFTTTInfoSWMM,swmm5 | Categories: H2OMAP SWMMInfoSWMMswmm5 | URL: http://wp.me/pnGa9-2wI

Tuesday, November 15, 2011

Qfull in SWMM 5 for various levels of y/yFull in a Circular Pipe

Subject:  Qfull in SWMM 5 for various levels of y/yFull in a Circular Pipe


Here is a table that shows the value of Q/Qfull for various levels of y/yFull or d/D in SWMM5.  The full flow if you loop off the top of a circular pipe at the 0.83 level would be about 1.01 times Qfull for the whole pipe.  Figure 1 shows how the flows are calculated at various values, Table 1 and Figure 2 show the values of a/aFull, r/rFull and q/qFull for various values of y/yFull.

Figure 1.   How Qfull and Qmax are calculated in  SWMM 5 based on the roughness, slope and a lookup table for area and hydraulic radius for a circular pipe.



y/yFull
a/aFull
r/rFull
Q/qFull
0.00000
0.00000
0.01000
0.00000
0.02000
0.00471
0.05280
0.00066
0.04000
0.01340
0.10480
0.00298
0.06000
0.02445
0.15560
0.00707
0.08000
0.03740
0.20520
0.01301
0.10000
0.05208
0.25400
0.02089
0.12000
0.06800
0.30160
0.03058
0.14000
0.08505
0.34840
0.04211
0.16000
0.10330
0.39440
0.05556
0.18000
0.12236
0.43880
0.07066
0.20000
0.14230
0.48240
0.08753
0.22000
0.16310
0.52480
0.10612
0.24000
0.18450
0.56640
0.12630
0.26000
0.20665
0.60640
0.14805
0.28000
0.22920
0.64560
0.17121
0.30000
0.25236
0.68360
0.19583
0.32000
0.27590
0.72040
0.22172
0.34000
0.29985
0.75640
0.24893
0.36000
0.32420
0.79120
0.27733
0.38000
0.34874
0.82440
0.30662
0.40000
0.37360
0.85680
0.33702
0.42000
0.39878
0.88800
0.36842
0.44000
0.42370
0.91760
0.40009
Table 1.   Table  of y/yFull and Q/Qfull based on a/aFull and r/rFull


Figure 2.   Graph of values in Table 1

AI Rivers of Wisdom about ICM SWMM

Here's the text "Rivers of Wisdom" formatted with one sentence per line: [Verse 1] 🌊 Beneath the ancient oak, where shadows p...