Saturday, June 29, 2013

Canada Day and a SWMM 5 Model with Flow Dividers

Canada Day and a SWMM 5 Model with Flow Dividers

Happy Canada Day,  A SWMM 5 Model with Canada Day as the WaterMark along with an Interesting SWMM 5 Model with Flow Dividers - it only works in Kinematic Wave Mode

Flow Divider Inp File
Canada Day Image





Monday, June 24, 2013

Two Pass InfoSewer Solution

Two Pass InfoSewer Solution

🔰The Two-Pass InfoSewer Solution method refines the estimation of flow within sewer networks by employing a dual-stage analysis. Initially, in the first pass, the system calculates the loads at each manhole and subsequently deduces the flow in the connecting links. This initial flow estimation is utilized to determine the preliminary depth-to-diameter ratio (d/D), the values of which you are presently mapping.

🔰Subsequently, the second pass of the solution process takes place. This stage is critical as it accounts for complex hydraulic phenomena, including backwater effects, surcharge conditions, and pressurized flow. It is during this phase that the depth-to-diameter ratio is adjusted, often resulting in an increased d/D value compared to the initial pass. This adjusted d/D is depicted in the Hydraulic Grade Line (HGL) plot.

🔰Utilizing the adjusted d/D from the second pass provides a more accurate indication of pipeline capacity and performance, particularly identifying pipes operating at or above 75% fullness. This metric is essential for effective sewer system management, offering a clearer insight into the potential for overflow and the need for infrastructural intervention.


Adjusted d/D is a better way of finding those pipes that are more than 0.75 full




How to Locate Parallel Pipes in H2OMAP SWMM

How to Locate Parallel Pipes in H2OMAP SWMM
You can use the command *Utility/Network Review Fix/Locate Parallel Pipe/Show as Domain *or as list of ID's

Utility/Network Review Fix/Locate Parallel Pipe/Show as Domain 

Sunday, June 23, 2013

Massive Flooding In Alberta Canada Forces 75,000 To Flee

Massive Flooding In Alberta Canada Forces 75,000 To Flee


Alberta, Canada. Credit: AP
Parts of Alberta, Canada were hit by extreme flooding the size of New York State on Friday, forcing 75,000 to evacuatetheir homes. Hit by heavy rain, people have abandoned their cars and low-lying residences in flooded waters Mayor Naheed Nenshi described as “an ocean at the moment.”
Across the world, cities in Germany have also been wrecked by flooding — one estimate puts the damage as high as $7.7 billion. Climate science explains that global warming leads to a 5 to 10 percent increase in rainfall, and subsequently leads to a higher risk of flooding.
As Climate Central notes in its reporting on the Calgary floods: “A study published in the journalNature Climate Change on June 9 found that flood frequency as well as the number of people at risk of inundation from flood events are both likely to increase as the world continues to warm.”
Heavy precipitation extremes, which sometimes result in river flooding, have been increasing in much of the U.S. east of the Mississippi River. Credit: Climate Central.
Alberta is home to controversial tar sands development, where the city of Calgary happens to be a source of climate denier arguments: The Calgary Herald, an influential paper in western Canada, has spouted climate denier points on its editorial page. The University of Calgary, meanwhile, was once paid to distribute resources opposing climate change science.

How to Find Duplicate Links in InfoSWMM

1. Make a table of all  From Nodes for all of the links using Conduit Information,
2. Made an output DBF table using the summary command of the Open Attribute Table of Arc Map
3. Joined the output DBF table to the Junction layer
4. Labeled all Nodes that had more than one outgoing link
5. You can see on the screen the possible duplicate links and decide which are valid and which are not allowed

Thursday, June 20, 2013

All of the rivers in the USA

Saturday, June 15, 2013

How to Use Excel to Make Random X, Y Coordinates in SWMM 5


NodeXYRand XRand Y
A2465753425-17995018681114137518-1734364827
B1220423412-915317559.2959332294.5-427183555.6
C1207970112-2970112080939805860-417442286.9
D-485678704.92970112080-172000249.51835904922
E-27895392281388542964-2050647732326604825.1
F-4221668742-130759651.3-3537896272-59872442.99

If you have a SWMM 5 file without any X, Y  coordinates you can assume an X and a Y and then use Excel to make each pair random by using the RAND() function.  You at least will see each of the nodes on the screen with associated links.

Wednesday, June 5, 2013

Wikipedia Traffic for the SWMM versus EPANET Articles

Subject:  Wikipedia Traffic for the SWMM versus EPANET Articles

Wikipedia has one article for EPANET and three articles for SWMM 5 (two are redirected to the Stormwater Management Model Main Article).  The statistics for the last three years (data before 2007 is unavailable) show an average of 28 visitors per day to SWMM and 16 per day to EPANET).  The search name has switched from the word SWMM to Stormwater Management Model starting in 2009.





Wednesday, May 29, 2013

Custom shape in SWMM 5


You can use a custom shape in SWMM 5 for a closed Link or if it is an open channel then you can use a Transect Section as in HEC-RAS

You use the custom shape,
Make a Table of Depth/Full Depth and Width/Full Depth

Thursday, May 23, 2013

Two Methods to Calibrate RDII RTK parameters in H2OMAP SWMM and InfoSWMM

Two Methods to Calibrate RDII RTK parameters in H2OMAP SWMM and InfoSWMM

There are two methods to calibrate the RTK parameters for RDII Analysis in InfoSWMM and H2OMAP SWMM.  The two methods are similar but use a different approach to calibrate the data:
1.       The RDII Hydrograph component of the Calibrator Add On also uses a Genetic Algorithm to calibrate the upstream RDII locations based on monitored flow but using the hydraulic network for the calibration.
2.      The RDII Analyst uses a Genetic Algorithm to Calibrate the RTK parameters for one location using monitored rainfall and flow data.  This calibration does not take into account the hydraulic routing in the network. 

Figure 1.  RDII Analyst and GA Calibrator

If you use the DOS Version of SWMM 5 be careful to NOT have spaces in directory names

InfoSWMM can import H2OMAP Sewer, InfoSewer and H2OMAP SWMM models

Water Providers of North America v 2.0 infographic

Representation of Surcharging in 1D Open Channels in InfoWorks ICM and CS

Tuesday, May 21, 2013

Nodes in InfoSWMM and H2OMAP SWMM

Nodes in InfoSWMM and H2OMAP SWMM

Or how the invert, rim elevation, crown elevation of the highest connecting link, pressure depth and flooded depth interact during a simulation.

Level (invert of the Node)
Elevation (crown – surcharged if the HGL is above the crown elevation)
Ground (either a depth above invert or a Rim Elevation)
Overflow is either lost, stored, increases the HGL, Inlet Controlled or flows to a 2D mesh depending on the values of Surcharge Depth, Ponded Area, Inlet Options or 2D Options, respectively



How to Make a New GeoDataBase in InfoSWMM or InfoSewer

Saturday, May 18, 2013

Five Parameters beside the Maximum Time Step that help control simulation length in InfoSWMM and SWMM

FYI, If you like twitter and like to center your embeded tweets add this to the custom twitter code How to center your embedded tweets class="twitter-tweet tw-align-center">

Wednesday, May 8, 2013

From 3QD - THE MATHEMATICS OF ROUGHNESS


THE MATHEMATICS OF ROUGHNESS

Holt_1-052313_jpg_230x1466_q85
Jim Holt reviews Benoit B. Mandelbrot's The Fractalist: Memoir of a Scientific Maverick, in the NYRB:
Benoit Mandelbrot, the brilliant Polish-French-American mathematician who died in 2010, had a poet’s taste for complexity and strangeness. His genius for noticing deep links among far-flung phenomena led him to create a new branch of geometry, one that has deepened our understanding of both natural forms and patterns of human behavior. The key to it is a simple yet elusive idea, that of self-similarity.
To see what self-similarity means, consider a homely example: the cauliflower. Take a head of this vegetable and observe its form—the way it is composed of florets. Pull off one of those florets. What does it look like? It looks like a little head of cauliflower, with its own subflorets. Now pull off one of those subflorets. What does that look like? A still tinier cauliflower. If you continue this process—and you may soon need a magnifying glass—you’ll find that the smaller and smaller pieces all resemble the head you started with. The cauliflower is thus said to be self-similar. Each of its parts echoes the whole.
Other self-similar phenomena, each with its distinctive form, include clouds, coastlines, bolts of lightning, clusters of galaxies, the network of blood vessels in our bodies, and, quite possibly, the pattern of ups and downs in financial markets. The closer you look at a coastline, the more you find it is jagged, not smooth, and each jagged segment contains smaller, similarly jagged segments that can be described by Mandelbrot’s methods. Because of the essential roughness of self-similar forms, classical mathematics is ill-equipped to deal with them. Its methods, from the Greeks on down to the last century, have been better suited to smooth forms, like circles. (Note that a circle is not self-similar: if you cut it up into smaller and smaller segments, those segments become nearly straight.)
Only in the last few decades has a mathematics of roughness emerged, one that can get a grip on self-similarity and kindred matters like turbulence, noise, clustering, and chaos. And Mandelbrot was the prime mover behind it. 
Posted by Robin Varghese at 12:51 PM | Permalink 

The Goal of SWMM5 Input Files

 🌟 SWMM5 (Storm Water Management Model 5) is a widely used urban hydrology and hydraulic modeling software developed by the United States E...