Saturday, January 8, 2011

Types of Nodes and Links in SWMM 5 - with Emojis


Subject: 📌 Types of Nodes and Links in SWMM 5

Introduction: 🚀 SWMM 5 is a powerful tool used for simulating the hydrology and hydraulics of urban drainage systems. Central to its modeling capabilities are the nodes and links that constitute the drainage network. Let's delve deeper into understanding these critical components.

Nodes in SWMM 5 📍: Nodes are pivotal points or junctions in the drainage system where water collects and gets distributed. They can be categorized as:

  1. Junctions 🚇: These are points where multiple links come together. They represent the convergence or divergence of flow paths. In SWMM 5, there's only one type of junction, but it plays a crucial role in defining the flow dynamics.

  2. Storages 🛢️: Storages are areas where water is temporarily held before it's released at a controlled rate. In SWMM 5, there are three types of storage:

    • Surface Storage: Represents flat areas like ponds.
    • Tank Storage: Denotes vertical cylindrical tanks.
    • General Storage: A more flexible form that can represent any shape.
  3. Dividers 🚧: Dividers distribute incoming flow into multiple paths. While they can be used in the dynamic wave solution of SWMM 5, they only help divide the flow in the kinematic wave solution. There are four types of dividers in SWMM 5, each with its unique characteristics.

  4. Outfalls 🌊: Outfalls represent points where water exits the system, either into a larger body of water or another system. SWMM 5 offers five types of outfalls, each designed to simulate different outflow conditions.

Links in SWMM 5 ⛓️: Links are the channels or pathways that connect nodes and facilitate the flow of water between them. They include:

  1. Conduits 🚰: These are pipes or channels that transport water between nodes. They can vary in shape, size, and material.

  2. Pumps 🔄: Pumps are devices that move water from one node to another, typically from a lower elevation to a higher one.

  3. Orifices ⚙️: Orifices control the flow of water between nodes based on the opening size and elevation.

  4. Weirs 🌁: Weirs are barriers that redirect or measure flow. They can be sharp-crested, broad-crested, or even compound.

  5. Outlets 🚪: Outlets control the discharge of water from a node based on the depth or head of water.

Conclusion 🌟: Understanding nodes and links in SWMM 5 is paramount for effective modeling. These components are the building blocks of the drainage system, and their accurate representation ensures reliable and meaningful simulation results. 📊🛠️


Figure 1.  Node and Link Objects in SWMM 5
Figure 2:  Node Objects in SWMM 5

SWMM 5.0.021 has 16 Overall Modeling Objects

Subject:  SWMM 5.0.021 has 16 Overall Modeling Objects

SWMM 5.0.021 has 16 Overall Modeling Objects divided into 4 categories:

1.   General
2.   Subcatchments
3.   Nodes
4.   Links

The objects in the General category can be applied to more than one category. For example, you can simulate pollutants either at a node or at the subcatchment level.

The objects are:
1.           Gage
2.           Links
3.           Shape
4.           Transect
5.           Nodes
6.           Unit Hydrograph
7.           Time Pattern
8.           Subcatchments
9.           Snowmelt
10.                Aquifer
11.                LID
12.                Landuse
13.                Pollut
14.                Curves
15.                Time Series
16.                Controls
Figure 1.  Modeling Objects in SWMM 5.0.021



Friday, January 7, 2011

How to Import a File from SWMM5 toH20MAP SWMM

Subject:  How to Import a File from SWMM5 toH20MAP SWMM

Step 1:  Make a new H2oMAP SWMM Network

Figure 1.  New Network Dialog.

Step 2:  Use the Exchange Tool / Import EPA SWMM 5
Figure 2. Exchange Tool in H20MAP SWMM

Step 3:  Import your EPA SWMM data file after locating it using the browser.  Click on Import.
Figure 3.  Import Dialog in H2OMAP SWMM.


Step 4:  Use the Attribute Browser,  DB Editor and Run Manager to see your data and network after import.
Figure 4.  The imported network in H2oMAP SWMM.


Tributary Area to a Node in InfoSWMM

Note:  Tributary Area to a Node in InfoSWMM

Here are the steps you neeed to take to calculate the tributary area of a node in InfoSWMM:

Step 1:  Use the DB Editor to get the total area in your model using the Data Statistics Tool.




Step 2:  Use the Process options in InfoSWMM to ONLY simulate surface runoff and flow routing.



Step 3. Copy the Node name and Total Inflow Volume from the Juntion Summary Output Table to Excel



Step 4:  Find the Total Wet Weather Flow during the simulation from the Wet Weather Inflow Row in the Flow Continuity Table.

Dry Weather Inflow   0.000  0.000
Wet Weather Inflow  0.782   0.255

Step 5. Make a new column in Excel to calculate the tributary area.

The Tributary Area of a Node = Total Inflow Volume / Total Wet Weather Flow * Total Subcatchment Area from Step 1.

You will now have the tributary area for each node.  You can verify this number = the total tributary area at the outfalls should equal the Total Subcatchment Area from Step 1.


Maximum
Maximum
Lateral
Total
Time
of
Lateral
Total
Tributary
Inflow
Inflow
Occurrence
Volume
Inflow
Inflow
Area
Node
Type
CFS
CFS
days
hr:min
10^6 gal
10^6 gal
acres
P001
JUNCTION
5.54
10.86
0
2:27
0.1
0.255
14.74
P005
JUNCTION
2.14
7.42
0
2:26
0.039
0.155
8.96
P009
JUNCTION
5.78
5.78
0
2:25
0.106
0.106
6.13
P011
JUNCTION
0.7
0.7
0
2:34
0.01
0.01
0.58
OUTLET
OUTFALL
0
10.84
0
2:28
0
0.255
14.74


Tuesday, January 4, 2011

How to add a volume variable to SWMM 5

Subject:  How to add a volume variable to SWMM 5


The purpose of this email is to explain how to add another print variable to the DOS version of SWMM 5 so that it can saved in a table in the text output file (after you recompile the modified C code).  The changes have no impact on the SWMM 5 GUI or the SWMM 5 DLL engine.

It is relatively simple five step procedure:

Step 1:  Add a new variable LINK_VOLUME at the end of the link variables in enums.h This is much easier if you just add a report variable that already is part of the link or node structure in objects.h  Your only restriction is that is should be added before the water quality variables.
 // increase by 1 the value of Max  Results in enums.h 
#define MAX_LINK_RESULTS
 7    
enum LinkResultType {
      LINK_FLOW,              // flow rate
      LINK_DEPTH,             // flow depth
      LINK_VELOCITY,          // flow velocity
      LINK_FROUDE,            // Froude number
      LINK_CAPACITY,          // ratio of depth to full depth
      
LINK_VOLUME, // current volume of the conduit - august 2007
      LINK_QUAL};             // concentration of each pollutant
 
Step 2:  Add the report index for LINK_VOLUME to procedure output_open in ouput.c

k = LINK_VOLUME; 
fwrite(&k, sizeof(int), 1, Fout.file);
for (j=0; j<nPolluts; j++)


Step 3: Save the link new volume to the binary output file in procedure link_get_results in link.c.  The new volume of the link has already been saved in the already existing variable newVolume in the Link Structure.

x[LINK_CAPACITY] = (float)c;
x[
LINK_VOLUME]   = (float)Link[j].newVolume;

Step 4. Modify report.c to include the new report variable in procedure report_links

fprintf(Frpt.file, "\n  %11s %8s  %9.3f %9.3f %9.3f %9.1f %9.1f",                          theDate, theTime, LinkResults[LINK_FLOW], LinkResults[LINK_VELOCITY], LinkResults[LINK_DEPTH]  LinkResults[LINK_CAPACITY]* 100.0,
LinkResults[LINK_VOLUME]);
Step 5.  Modify procedure report_LinkHeader in report.c to show the new variable volume:

fprintf(Frpt.file,
"\n                             Flow  Velocity     Depth   Percent   
   Volume");
");
 

Sunday, January 2, 2011

Rain Barrel LID Summary

Subject:  Rain Barrel LID Summary
Rain Barrel LID Summary



Rain Barrel LID Fluxes in SWMM 5.0.021


Subject:  Rain Barrel LID Fluxes in SWMM 5.0.021

The fluxes are limited in a Rain Barrel Low Impact Development (LID) control in SWMM 5.  The fluxes only include (Figure 1 and Figure 2):

1.      Total Inflow,
2.      Surface Outflow,
3.      Drain Outflow and
4.      Final Storage

The fluxes are also listed in the LID Performance Summary Table in the output text file.

  ***********************
  LID Performance Summary
  ***********************


  ----------------------------------------------------------------------------------------------------------
                                   Total      Evap     Infil   Surface    Drain      Init.     Final     Pcnt.
                                  Inflow      Loss      Loss   Outflow   Outflow   Storage   Storage     Error
  Subcatchment      LID Control       in        in        in        in        in        in        in
  -----------------------------------------------------------------------------------------------------------
  S1                RainBarrels    110.95      0.00      0.00     62.95     28.15      0.00     23.11    -2.94
Figure 1. Flux Pathways for a Rain Barrel LID

Figure 2. Rain Barrel LID Fluxes


Rain Barrel LID Drain Outflow in SWMM 5.0.021


Subject:  Rain Barrel LID Drain Outflow in SWMM 5.0.021

 The drain outflow in a Rain Barrel LID is defined by the user defined drain coefficient and drain exponent and the simulation storage depth  The storage outflow does not occur until it has been dry for at least the drain delay time in hours.
Figure 1.  Storage Outflow or Drain Outflow for a Rain Barrel LID

Figure 2. You can see the effect of the Drain Delay in the output file for LID Simulation.



Saturday, January 1, 2011

Rain Barrel LID Storage Depth in SWMM 5.0.021


Subject:  Rain Barrel LID Storage Depth in SWMM 5.0.021

The storage depth in a Rain Barrel LID is limited by the user defined maximum rain barrel height in inches or millimeters.  A rain barrel is one of the new LID features in SWMM 5.0.021
Figure 1.  Storage Depth in a Rain Barrel LID

Link and Node Basics in SWMM 5


Subject:  Link and Node Basics in SWMM 5
Figure 1. Link and Node Basics in SWMM 5

What are Hours Above Full Normal Flow in SWMM 5?


Subject:  What is Hours Above Full Normal Flow in SWMM 5?

The Conduit Surcharge Summary Table in the Status Report or Report text file of a drainage system model provides detailed insights into the performance of various pipes (or conduits) in the system. One of the critical columns in this table is "Hours above Full Normal Flow," which represents the total number of hours the flow in a given conduit was above the reference full flow.

Hours above Full Normal Flow:

This parameter indicates the duration for which the flow in the conduit exceeded the 'Full Normal Flow.' Full Normal Flow refers to the maximum flow that can pass through a conduit under normal (gravity) conditions, as calculated by Manning's equation.

However, the flow in the conduit can surpass the Full Normal Flow even when the conduit isn't entirely full. This situation can occur when the head difference across the conduit is high enough.

Head Difference:

The head difference is the difference in water surface elevations at the upstream and downstream ends of a conduit. Essentially, it's the drop in water level from one end of the conduit to the other. This head difference is the driving force for the flow of water in gravity-fed systems. The higher the head difference, the greater the force pushing water through the conduit, which can result in flows exceeding the Full Normal Flow.

Capacity or d/D:

The capacity of the conduit, also represented by the ratio d/D, is a measure of how full the pipe is. In this ratio, 'd' stands for the depth of flow in the conduit, while 'D' denotes the diameter of the conduit. This ratio varies from 0 to 1, where 0 signifies an empty conduit, and 1 represents a fully filled conduit.

Understanding these parameters allows engineers and system designers to monitor the system's performance and identify potential issues. For instance, frequent or prolonged periods of flow above the Full Normal Flow might suggest that a conduit is undersized for the flow it is receiving, indicating a need for system upgrades or management changes.

Figure 1.  Hours above Normal Flow in SWMM 5 Links

Figure 2. Flow versus Full Flow in SWMM 5

The Goal of SWMM5 Input Files

 🌟 SWMM5 (Storm Water Management Model 5) is a widely used urban hydrology and hydraulic modeling software developed by the United States E...