Saturday, September 24, 2011

Reading the Output of Older SWMM 5 versions in Newer SWMM 5 Versions

Subject:   Reading the Output of Older SWMM 5 versions in Newer SWMM 5 Versions

It is very easy to read the output graphs and output text file from older versions of SWMM 5 in newer versions of SWMM 5 as long as the rules are followed:

1.   You need to have the RPT file for the InputFileName or InputFileName.RPT
2.   You need to have the OUT file for the InputFileName or InputFileName.OUT
3.   The File Size for InputFileName.RPT is greater than 0
4.   The Run Status for InputFileName.OUT is true based on the tests in CheckRunStatus
a.       // Starting from end of file, read byte offsets of file's sections
b.       // Read # time periods, error code & file signature
c.       // Read file signature & version number from start of file
d.       // Check if run was completed
e.       // Check if results were saved for 1 or more time periods
f.        // Check if correct version was used
g.       // Check if error messages were generated

Figure 1.   The RPT File or OUT File is not saved unless you 1st save the Current Simulation Results.

Figure 2.   The binary output file of SWMM 5.0.013 in SWMM 5.0.022

Reading the Output of Older SWMM 5 versions in Newer SWMM 5 Versions

by dickinsonre
Subject:   Reading the Output of Older SWMM 5 versions in Newer SWMM 5 Versions

It is very easy to read the output graphs and output text file from older versions of SWMM 5 in newer versions of SWMM 5 as long as the rules are followed:

1.   You need to have the RPT file for the InputFileName or InputFileName.RPT
2.   You need to have the OUT file for the InputFileName or InputFileName.OUT
3.   The File Size for InputFileName.RPT is greater than 0
4.   The Run Status for InputFileName.OUT is true based on the tests in CheckRunStatus
a.       // Starting from end of file, read byte offsets of file's sections
b.       // Read # time periods, error code & file signature
c.       // Read file signature & version number from start of file
d.       // Check if run was completed
e.       // Check if results were saved for 1 or more time periods
f.        // Check if correct version was used
g.       // Check if error messages were generated

Figure 1.   The RPT File or OUT File is not saved unless you 1st save the Current Simulation Results.

Figure 2.   The binary output file of SWMM 5.0.013 in SWMM 5.0.022


Saturday, September 17, 2011

All Possible Culverts Example Model in SWMM5

Note:  Attached is an example SWMM 5 model that has all 57 culvert types possible in SWMM 5 in one model.  The culverts are 57 small individual networks consisting of an inflow node, an upstream open channel, upstream node for the culvert, culvert link with culvert code, downstream node of the culvert, downstream open channel and finally an outfall node.  The culvert code and the shape of the culvert determine which FHWA equation is used to determine the flow INTO the Culvert during the simulation:
 1.   The flow from the St Venant Equation or
2.   The flow from the FHWA equation
 The minimum flow is used by the program. 



all_culverts.inp Download this file

All Possible Culverts Example Model in SWMM5

by dickinsonre
Note:  Attached is an example SWMM 5 model that has all 57 culvert types possible in SWMM 5 in one model.  The culverts are 57 small individual networks consisting of an inflow node, an upstream open channel, upstream node for the culvertculvert link with culvert code, downstream node of the culvert, downstream open channel and finally an outfall node.  The culvert code and the shape of the culvert determine which FHWA equation is used to determine the flow INTO the Culvert during the simulation:
1.   The flow from the St Venant Equation or
2.   The flow from the FHWA equation
The minimum flow is used by the program. 

How Dry Weather Flow is Used in InfoSWMM at a Node

Note:   How Dry Weather Flow is Used in InfoSWMM at a Node



How Dry Weather Flow is Used in InfoSWMM at a Node

by dickinsonre
Note:   How Dry Weather Flow is Used in InfoSWMM at a Node
 There are four components to the Dry Weather Flow (DWF) in InfoSWMM:
 1.       The mean flow in user units at the node,
2.      The DWF Allocation Code – if you are using the DWF Allocator
3.      The Pattern for Weekday, Weekend etc for the mean flow.
 The data is entered or entered for you in the Node Inflow Icon or the Operations Tab of the Attribute Browser 
Node Inflow Icon and Associated Data
 Operation Tab Patterns
 You can also make global changes to your DWF using the Node DWF DB Table Under Extended Element Modeling Data


SWMM5 Weir Rules, Head Calculations and Weir HGL Plots

Note:  SWMM5 Weir Rules and Head Calculations

This note attempts to explain both how the head upstream and the head downstream of a weir in SWMM 5 is calculated compared to the weir crest elevation and also to explain how the weir is presented in the HGL plot of SWMm 5.  There has been confusion in the past concering how the weir is shown compared to the actual weir calculations.  The node head is calculated obviously at both ends of the weir but the head over the weir is always based on H1-Crest or H2-Crest (Figure 1) and hence the weir should look flat – to the weir the downstream head is important but NOT the downstream node invert so the weir really is flat and should look flat in the HGL Profile across the weir (Figure 2).    The crest elevation is always relative to the upstream node invert elevation NOT the downstream node invert elevaation

Figure 1.  How the Head across a Weir is calculated in SWMM 5

Figure 2.   HGL Profile across a Weir in SWMM 5.0.022.  The black line should be shown flat.


Weir and Orifice Flow Equations for a Weir in SWMM 5

by dickinsonre
Note:  Weir and Orifice Flow Equations for a Weir in SWMM 5
If you use a weir in SWMM 5 then two flow equations are used
1.       The weir uses the weir flow equation when the head at the weir is between the invert elevation of the weir and the crown of the weir and
2.      An orifice equation when the head is above the weir crown or the weir is submerged.


Saturday, September 3, 2011

Time Step Approximation based on Link Lengths

Note:  A rough approximation of the time step you need for an InfoSWMM or H2OMAP SWMM model can be found by finding the mean link length using the field statistics tool for the length in the Conduit DB Table and then estimating the time step from the mean length, mean full depth velocity and mean full depth wave celerity.

The time step actually used during the simulation is related to this velocity and the safety adjustment factor.  The larger the safety adjustment factor the larger the mean time step listed in the Routing Time Step Suggestion.




Stream Names in the USA

Stream Names in the USA from http://derekwatkins.wordpress.com/2011/07/25/generic-stream-terms/
Map of generic toponyms for streams in the contiguous US
Generic place names (or toponyms) such as Cumberland Gap or Mount Rainier provide general categorical descriptions of a geographic feature, in contrast to specific toponyms, which provide a unique identifier: Lake Huron. This map taps into the place names contained in the USGS National Hydrography Dataset to show how the generic names of streams vary across the lower 48. Creeksand rivers are symbolized in gray due to their ubiquity (although the etymology behind the American use of creek is interesting), while bright colors symbolize other popular toponyms.
Lite-Brite aesthetic notwithstanding, I like this map because it illustrates the range of cultural and environmental factors that affect how we label and interact with the world. Lime green bayous follow historical French settlement patterns along the Gulf Coast and up Louisiana streams. The distribution of the Dutch-derived term kill (dark blue) in New York echoes the colonial settlement of “New Netherland” (as well as furnishing half of a specific toponym to the Catskill Mountains). Similarly, the spanish-derived terms rioarroyo, and cañada (orange hues) trace the early advances of conquistadors into present-day northern New Mexico, an area that still retains some unique cultural traitsWashes in the southwest reflect the intermittent rainfall of the region, while streams named swamps (desaturated green) along the Atlantic seaboard highlight where the coastal plain meets the Appalachian Piedmont at the fall line.

Thursday, August 25, 2011

The Cheerful World Of Japanese Manhole Covers

From the Dish and Andrew Sullivan “The Cheerful World Of Japanese Manhole Covers”


The Cheerful World Of Japanese Manhole Covers


by Maisie Allison
Michelle Aldredge introduces us to a minor feat in public art:
One of my favorite book discoveries this summer is Drainspotting
 by Remo Camerota. The book celebrates an array of fascinating manhole cover designs from Japan. According to Camerota, nearly 95% of the 1,780 municipalities in Japan have their very own customized manhole covers. The country has elevated this humble, practical object to its own art form. The designs depict everything from local landmarks and folk tales to flora and fauna and images created by school children. Camerota explains the evolution of these custom covers in Drainspotting  http://www.gwarlingo.com/2011/drainspotting-61-amazing-manhole-covers-from-japan/
In the 1980s as communities outside of Japan’s major cities were slated to receive new sewer systems these public works projects were met with resistance, until one dedicated bureaucrat solved the problem by devising a way to make these mostly invisible systems aesthetically appreciated aboveground: customized manhole covers.

Sunday, August 7, 2011

Map Display of LID Usage in SWMM 5

Subject:   Map Display of LID Usage in SWMM 5

A new Map Display feature in SWMM 5.0.022 is the LID Usage parameter which shows you whether a Subcatchment has LID’s or not.   You use it by using Map Display and choosing LID Usage as the Map Display.  LID - Low Impact Development.

 Map Display of LID Usage in SWMM 5




Friday, August 5, 2011

Example VSP Pump in SWMM 5 - Version 1

Subject:   Example VSP Pump in SWMM 5 - Version 1

Here is one way to model multiple pumps between the same downstream and upstream nodes using the pump curves and the Real Time Control Rules (RTC) in SWMM 5.  Here are the steps:

1.   Enter the data for three pumps in the browser by using the Add Pump Icon
2.   Enter three Pump Head/Flow Curves so that the 2nd and 3rd Pump Curves are the sum of the flows in the 1st and 2nd Pumps together and the sum of the flows in the 1st, 2nd and 3rd respectively for the 2nd and 3rd Pump Curves

3.   Enter a RTC Rule in the Control Editor so that when the 1st Pump is turned on – the 2nd and 3rd Pump is turned off
4.   Enter a RTC Rule in the Control Editor so that when the 2nd  Pump is turned on – the 1st  and 3rd Pump is turned off
5.   Enter a RTC Rule in the Control Editor so that when the 3rd  Pump is turned on – the 1st and 2nd Pump is turned off

Using these rules you can see that for the 1st Pump turns on when the Node WetWell has a depth below 2 feet, the 2nd Pump turns on when the Node is between a depth of 2 to 5 feet and the 3rd Pump turns on when the Node Depth is above 5 feet.

RULE Pump1
IF Node WetWell Depth <= 2
THEN PUMP PUMP2 STATUS = OFF
AND PUMP PUMP3 STATUS = OFF
Priority 1

RULE Pump2
IF Node WetWell Depth > 2
AND Node WetWell Depth <= 5
THEN PUMP PUMP1 STATUS = OFF
AND PUMP PUMP3 STATUS = OFF
Priority 2

RULE Pump3
IF Node WetWell Depth > 5
THEN PUMP PUMP1 STATUS = OFF
AND PUMP PUMP2 STATUS = OFF
Priority 3


Sunday, July 31, 2011

RDII Parameters for SWMM 5

Subject:  RDII Parameters for SWMM 5

There are three types of RDII Response, six different parameters and an annual and optional twelve monthly sets of distinct parameters.


RDII Intial Abstraction in SWMM 5

Subject:  RDII Initial Abstraction in SWMM 5

RDII Initial Abstraction in SWMM 5

by dickinsonre
Subject:  RDII Initial Abstraction in SWMM 5 
The initial abstraction in each of the three components of RDII in SWMM 5 are updated at each time step.  The initialabstraction (ia) is:
 ia = iaMax - iaUsed 
based on the maximum amount of ia, the ia used (iaUsed), the recovery rate (iaRecov) and the month and class of RDII.  You can enter a value for iaMax, iaInit and iaRecov for each month. 
 
The iaUsed at the beginning of the simulation is set equal to iaInit

and if there is no rainfall



The Groundwater flow in SWMM 5 Groundwater

Subject:  The Groundwater flow in SWMM 5 Groundwater

The Groundwater Flow Component in SWMM5

by dickinsonre
Subject:  The Groundwater flow in SWMM 5 Groundwater 
The Groundwater flow in SWMM 5 is actually made up of three components: 
1.   groundwater flow computed from the coefficient a1 and exponent b1
2.   groundwater flow computed from the coefficient a2 and exponent b2 and
3.   A Surface Water / Groundwater Interaction coefficient a3
The total Groundwater flow is the sum of the flow from 1, 2 and 3 – normally 2 is the opposite of 1.




Saturday, July 30, 2011

Exit, Other and Entrance Loss Values in SWMM 5

Subject:  Exit, Other and Entrance Loss Values in SWMM 5

The entrance, exit and other losses in SWMM 5 are computed at the upstream, downstream and midpoint of the sections of the link.  However, if the normal flow equation is used for the link during a time step then these losses are zero as the flow in the link is based solely on the upstream area and upstream hydraulic radius of the link.   If you add loss coefficients and the normal flow equation is used then you will not see any change in the flow as you modify the loss coefficients.

Exit, Other and Entrance Loss Values in SWMM 5

by dickinsonre
Subject:  ExitOther and Entrance Loss Values in SWMM 5

The entranceexit and other losses in SWMM 5 are computed at the upstream, downstream and midpoint of the sections of the link.  However, if the normal flow equation is used for the link during a time step then these losses are zero as the flow in the link is based solely on the upstream area and upstream hydraulic radius of the link.   If you add loss coefficients and the normal flow equation is used then you will not see any change in the flow as you modify the loss coefficients.




Link Simulated Parameters used in either the Normal Flow or St Venant Equation of SWMM 5

Subject:  Link Simulated Parameters used in either the Normal Flow or St Venant Equation of SWMM 5

St. Venant equation – this is the link attribute data used when the St. Venant Equation is used in SWMM 5.  Simulated Parameters from the upstream, midpoint and downstream sections of the link are used.

Normal Flow Equation – this is the link attribute data used when the Normal Flow Equation is used in SWMM 5. Only simulated parameters from the upstream end of the link are used if the normal flow equation is used for the time step.

Link Simulated Parameters used in either the Normal Flow or St Venant Equation of SWMM 5

by dickinsonre
Subject:  Link Simulated Parameters used in either the Normal Flow or St Venant Equation of SWMM 5

StVenant equation – this is the link attribute data used when the StVenant Equation is used in SWMM 5.  Simulated Parameters from the upstream, midpoint and downstream sections of the link are used.
Normal Flow Equation – this is the link attribute data used when the Normal Flow Equation is used in SWMM 5. Only simulated parameters from the upstream end of the link areused if the normal flow equation is used for the time step.

The Goal of SWMM5 Input Files

 ðŸŒŸ SWMM5 (Storm Water Management Model 5) is a widely used urban hydrology and hydraulic modeling software developed by the United States E...